Ferille n= h

Exercice 1. On cherche à savoir si la fréquence d'une maladie est liée au groupe sanguin. Sur 200 malades observés, on a dénombré 104 personnes du groupe O, 76 du groupe A, 18 du groupe B, 2 du groupe AB.

On admettra que, dans la population générale, la répartition entre les groupes est : 47% pour le groupe O, 43% pour le groupe A, 7% pour le groupe B et 3 % pour le groupe AB.

Peut-on admettre, au niveau 0,10, que la répartition en groupe sanguin est conforme à celle de la population totale?

La Fréquences observérs

Or or
$$\frac{10h}{200}$$
Or $\frac{18}{200}$
Or observed

Or $\frac{76}{200}$
Or observed

Engerted

Los; Maladie II Gpe Songrin, dies O; ≈ E; V; € fo, A, B, AB}

$$\chi = \sum_{i}^{2} \frac{(0; -\varepsilon_{i})^{2}}{\varepsilon_{i}}$$

Groupe sanguin	O_i	E_i	(O_i-E_i)	$(O_i-E_i)^2$	$rac{(O_i {-} E_i)^2}{E_i}$
0	104	94	104 - 94 = 10	$10^2 = 100$	$\frac{100}{94} = 1.064$
А	76	86	76 - 86 = -10	$(-10)^2 = 100$	$\frac{100}{86} = 1.163$
В	18	14	18 - 14 = 4	$4^2=16$	$rac{16}{14} = 1.143$
AB	2	6	2-6=-4	$(-4)^2 = 16$	$rac{16}{6}=2.667$

Ho? Les répuntitions Epes enngins et moledie

Mr o Les ripuntitions Eper sur jins et mula die sont to dans la population

degrés de 0;6ertie

910% = 6,251 (lin la Vista)

910% < X =) On Rejette Ho (=) Gpe sangins et muledie ne sent pro
in dipundamis

P x1

Exercice 2. Une enquête effectuée auprès du comptoir de 150 coopératives agricoles a permis d'étudier l'arrivée dans le temps des usagers de ces coopératives. >5 AREGROUPER

Pendant l'unité de temps (d'une heure) on a noté :

1 (0 0 0
usagers arrivés	0	1	2	3	4	5	6	lus voleurs de
Nombre de coopératives	37	46	39	19	5	3	1	queve
	•	•	•			$\overline{}$		

- (1) Calculer la moyenne et la variance empirique.
- (2) Peut-on admettre, au niveau 5%, que la population suit une loi de Poisson?

$$\frac{1}{X} = \frac{1}{N} \sum_{i=0}^{6} i \times n_{i} = \frac{37 \times 0 + 46 \times 1 + \dots + 1 \times 6}{150} = \frac{1,48}{1}$$

Usagers arrivés (X_i)	Effectifs observés (O_i)	Effectifs attendus (E_i)
0	37	37.75
1	46	55.82
2	39	41.31
3	19	20.37
4	5	7.53
5+	4	3.22

$$L_{0} \chi^{2} = \sum_{i=1}^{\infty} \frac{(O_{i}-E_{i})^{i}}{E_{i}}$$

X_i	O_i	E_i	O_i-E_i	$(O_i-E_i)^2$	$rac{(O_i {-} E_i)^2}{E_i}$
0	37	37.75	37 - 37.75 = -0.75	$(-0.75)^2 = 0.5625$	$\frac{0.5625}{37.75} = 0.0149$
1	46	55.82	46 - 55.82 = -9.82	$(-9.82)^2 = 96.43$	$\frac{96.43}{55.82} = 1.728$
2	39	41.31	39 - 41.31 = -2.31	$(-2.31)^2 = 5.34$	$\frac{5.34}{41.31} = 0.129$
3	19	20.37	19 - 20.37 = -1.37	$(-1.37)^2 = 1.88$	$rac{1.88}{20.37} = 0.0924$
4	5	7.53	5-7.53=-2.53	$(-2.53)^2 = 6.40$	$rac{6.40}{7.53} = 0.849$
5+	4	3.22	4 - 3.22 = 0.78	$(0.78)^2 = 0.61$	$rac{0.61}{3.22} = 0.190$

Somme des contributions

$$\chi^2 = 0.0149 + 1.728 + 0.129 + 0.0924 + 0.849 + 0.190 = 2.088$$

8.1. Test de conformité à une loi.

Soit un échantillon $(X_1, ..., X_n)$ prenant un nombre fini de valeurs $\{r_1, ..., r_k\}$.

Soit des nombres réels strictement positifs $p_1, ..., p_k$ tels que $\sum_{i=1}^k p_i = 1$. On souhaite tester l'hypothèse \mathcal{H}_0 : " $\forall i = 1, ..., r$, $\mathbb{P}(X_1 = r_i) = p_i$ " contre l'hypothèse \mathcal{H}_1 contraire.

La statistique du test est :
$$D_n^2 := \sum_{i=1}^k \frac{\left(N(i) - np_i\right)^2}{np_i}, \text{ où } N(i) := Card\{j=1,...n : X_q = i\}.$$

Soit $\alpha \in]0;1[$. Le domaine de rejet du test au niveau α est : $\{D_n^2 \geq t_{(\alpha,k-1)}\}$ où $t_{(\alpha,k-1)}$ est l'unique nombre réel tel que $\chi_{k-1}^2(]-\infty;t_{(\alpha,k-1)}])=1-\alpha.$

Ce test s'applique dès que $\min_{i=1,\dots,k} np_i \geq 5$ (chaque facteur devant contribuer de manière raisonnable à D_n^2).

Ce test peut s'appliquer :

- à une loi discrète quelconque, en regroupant les valeurs de queues dans une même classe.
- à une loi continue en la discrétisant (en considérant par exemple des classes équiprobables). Mais cela peut être maladroit. Pour les lois continues, il existe un autre test que nous ne verrons pas : le test de Kolmogorov-Smirnov.

Si vous devez estimer un ou plusieurs paramètres : si pour déterminer la loi, vous devez estimer ℓ paramètres (tels que l'espérance estimée par la moyenne empirique ou bien la variance estimée par la variance empirique), alors \mathcal{D}_n suivra approximativement un loi $\chi^2_{k-\ell-1}$ (k est le nombre de classe et ℓ le nombre de paramètres estimés).

Par exemple, pour tester si un échantillon est de loi de Poisson, pour déterminer les p_i , il faut connaître le paramètre de la loi de Poisson (que l'on peut estimer par exemple par la moyenne empirique). Il faudra alors retrancher 1 au nombre de degré de liberté de la loi du chi-deux.

Exercice 3. Une société d'assurances a comptabilisé, parmi ses 500 assurés, ceux qui ont déclaré un (ou plusieurs) sinistres au cours d'une année. Les résultats sont présentés dans le tableau suivant :

Sinistres déclarés	0	1	2	3	≥ 4
Nombre d'assurés	171	202	80	36	11

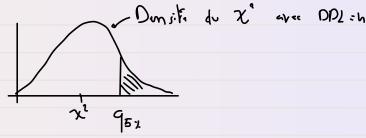
Peut-on admettre au niveau 5% que le nombre de sinistres déclarés par un assuré suit une loi de Poisson de paramètre 1?

Ho : Les données suivent une l.: de Poisson de paromitre d=17

Sinistres (k)	Observé O_k	Attendu E_k	$(O_k-E_k)^2/E_k$
0	171	183.95	$(171 - 183.95)^2/183.95 = 0.912$
1	202	183.95	$\frac{(202-183.95)^2}{183.95} = 1.77$
2	80	91.95	$rac{(80-91.95)^2}{91.95} = 1.552$
3	36	30.65	$rac{(36-30.65)^2}{30.65} = 0.934$
≥4	11	9.15	$\frac{(11-9.15)^2}{9.15} = 0.374$

$$\chi^2 = 0,912 + 1,77 + ... + 0,374 = 6,184$$

Lo Ici 951 > X2 ie



Lo On ne peut pas rejeter H.

Exercice 4. Les résultats de l'évolution d'une maladie sur 1000 personnes ayant suivi l'un ou l'autre des traitements A et B sont résumés dans le tableau ci-dessous :

	Guérison	$Am\'elioration$	Station naire	Totaux
Traitement A	280	210	110	600
Traitement B	220	90	90	400
Totaux	500	300	200	1000

Peut-on conclure au niveau $\alpha = 0.05$ que les traitements A et B ont le même effet?

$$P(Guirison NA)$$
 devroit it is equit in Equit in $P(Guirion)_X P(A)$

$$= \frac{500}{1000} \times \frac{600}{1000}$$

Traitement \ Résultat	Guérison	Amélioration	Stationnaire	Total
Traitement A (600)	$rac{600 imes 500}{1000} = 300$	$\frac{600 \times 300}{1000} = 180$	$rac{600 imes 200}{1000} = 120$	600
Traitement B (400)	$rac{400 imes 500}{1000} = 200$	$\frac{400 \times 300}{1000} = 120$	$\frac{400 \times 200}{1000} = 80$	400
Totaux	500	300	200	1000

La statistique du Chi-deux observée est donnée par :

$$\chi^2_{
m obs} = \sum_{i,j} rac{(O_{ij}-E_{ij})^2}{E_{ij}}$$

Calcul détaillé:

Case	Observé ${\cal O}_{ij}$	Attendu E_{ij}	$(O_{ij}-E_{ij})^2/E_{ij}$
A, Guérison	280	300	$\frac{(280-300)^2}{300} = \frac{400}{300} = 1.333$
A, Amélioration	210	180	$\frac{(210-180)^2}{180} = \frac{900}{180} = 5.000$
A, Stationnaire	110	120	$\frac{(110-120)^2}{120} = \frac{100}{120} = 0.833$
B, Guérison	220	200	$\frac{(220-200)^2}{200} = \frac{400}{200} = 2.000$
B, Amélioration	90	120	$\frac{(90-120)^2}{120} = \frac{900}{120} = 7.500$
B, Stationnaire	90	80	$\frac{(90-80)^2}{80} = \frac{100}{80} = 1.250$

On additionne tout:

$$\chi^2_{
m obs} = 1.333 + 5.000 + 0.833 + 2.000 + 7.500 + 1.250 = 17.916$$

Lo ODL =
$$\# \text{lignes} -1$$
 $(\# \text{colones} -1) = (2-1)(3-1) = 2$
Lo $q_{5.7}^{\text{OOL}=2} = 5,991$

Exercice 5. On veut savoir si le temps écoulé depuis la vaccination contre une maladie donnée a ou non une influence sur le degré de gravité de la maladie lorsqu'elle apparaît.

Pour simplifier, nous ne distinguons que trois degrés de gravité.

Parmi les malades, nous comparons les vaccinés depuis moins de 25 ans et ceux vaccinés depuis plus de 25 ans :

Degré de gravité	Légère	Moyenne	Forte
$vaccin < 25 \ ans$	43	120	324
$vaccin > 25 \ ans$	230	347	510

Conclure aux niveaux 0,05 et 0,01.

Temps depuis vaccination	Gravité légère	Gravité moyenne	Gravité forte	Total
Vaccin < 25 ans	43	120	324	487
Vaccin > 25 ans	230	347	510	1087
Total	273	467	834	1574

- ullet H_0 : Le degré de gravité est indépendant du temps écoulé depuis la vaccination.
- ullet H_1 : Le degré de gravité dépend du temps écoulé depuis la vaccination.

$$E_{ij} = rac{ ext{(total ligne i)} imes ext{(total colonne j)}}{ ext{total général}}$$

Calcul détaillé :

Temps \ Gravité	Légère	Moyenne	Forte	Total
Vaccin < 25 ans	$\frac{487 \times 273}{1574} = 84.49$	$rac{487 imes 467}{1574} = 144.50$	$rac{487 imes 834}{1574} = 258.01$	487
Vaccin > 25 ans	$\frac{1087 \times 273}{1574} = 188.51$	$rac{1087 imes 467}{1574} = 322.50$	$rac{1087 imes 834}{1574} = 575.99$	1087
Total	273	467	834	1574

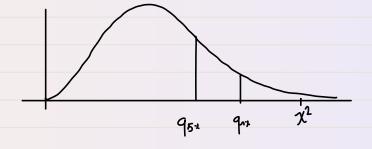
$$\chi^2_{obs} = \sum rac{(O_{ij}-E_{ij})^2}{E_{ij}}$$

Calcul détaillé :

Case	Observé O_{ij}	Théorique E_{ij}	$rac{(O-E)^2}{E}$
<25 ans, Légère	43	84.49	$\frac{(43-84.49)^2}{84.49} = 20.38$
<25 ans, Moyenne	120	144.50	$\frac{(120 - 144.50)^2}{144.50} = 4.15$
<25 ans, Forte	324	258.01	$\frac{(324 - 258.01)^2}{258.01} = 16.89$
>25 ans, Légère	230	188.51	$\frac{(230-188.51)^2}{188.51} = 9.13$
>25 ans, Moyenne	347	322.50	$\frac{(347 - 322.50)^2}{322.50} = 1.86$
>25 ans, Forte	510	575.99	$\frac{(510 - 575.99)^2}{575.99} = 7.56$

Somme totale :

$$\chi^2_{obs} = 20.38 + 4.15 + 16.89 + 9.13 + 1.86 + 7.56 = 59.97$$



Exercice 6. On étudie deux caractères et on classe les effectifs observés par couples de valeurs dans le tableau suivant.

Les deux caractères peuvent-ils être considérés comme indépendants au niveau 0,01?

	0	1	2	≥ 3
0	130	82	68	20
1	75	73	36	16
2	35	25	16	24

Caractère 1 \ Caractère 2	0	1	2	≥3	Totaux
0	130	82	68	20	300
1	75	73	36	16	200
2	35	25	16	24	100
Totaux	240	180	120	60	600

- ullet Hypothèse nulle H_0 : Les deux caractères sont indépendants.
- ullet Hypothèse alternative H_1 : Les deux caractères ne sont pas indépendants.

$$E_{ij} = rac{ ext{(total ligne i)} imes ext{(total colonne j)}}{ ext{total général}}$$

Calcul détaillé des effectifs théoriques :

Cellule	Calcul	Valeur théorique E_{ij}
(0,0)	$\frac{300 \times 240}{600}$	120
(0,1)	$\frac{300 \times 180}{600}$	90
(0,2)	$\frac{300 \times 120}{600}$	60
(0,≥3)	$\frac{300\times60}{600}$	30
(1,0)	$\frac{200 \times 240}{600}$	80
(1,1)	$\frac{200 \times 180}{600}$	60
(1,2)	$\frac{200 \times 120}{600}$	40
(1,≥3)	$\frac{200\times60}{600}$	20
(2,0)	$\frac{100 \times 240}{600}$	40
(2,1)	$\frac{100 \times 180}{600}$	30
(2,2)	$\frac{100 \times 120}{600}$	20
(2,≥3)	$\frac{100\times60}{600}$	10

$$\chi^2_{
m obs} = \sum rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Calcul détaillé :

Case	Observé (<i>O</i>)	Théorique (E)	$\frac{(O-E)^2}{E}$
(0,0)	130	120	$\frac{(130-120)^2}{120} = 0.833$
(0,1)	82	90	$\frac{(82-90)^2}{90} = 0.711$
(0,2)	68	60	$\frac{(68-60)^2}{60} = 1.067$
(0,≥3)	20	30	$rac{(20-30)^2}{30} = 3.333$
(1,0)	75	80	$rac{(75-80)^2}{80}=0.313$
(1,1)	73	60	$\frac{(73-60)^2}{60} = 2.817$
(1,2)	36	40	$\frac{(36-40)^2}{40} = 0.400$
(1,≥3)	16	20	$\frac{(16-20)^2}{20} = 0.800$
(2,0)	35	40	$rac{(35-40)^2}{40}=0.625$
(2,1)	25	30	$\frac{(25-30)^2}{30} = 0.833$
(2,2)	16	20	$\frac{(16-20)^2}{20} = 0.800$
(2,≥3)	24	10	$\frac{(24-10)^2}{10} = 19.600$

Somme totale :

$$\chi^2_{\rm obs} = 0.833 + 0.711 + 1.067 + 3.333 + 0.313 + 2.817 + 0.400 + 0.800 + 0.625 + 0.833 + 0.800 + 19.600 = 32.132$$