

The field-road diffusion model: fundamental solution and asymptotic behavior

Samuel Tréton (joint work with Matthieu Alfaro and Romain Ducasse)

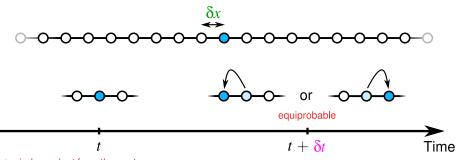
University of Rouen, Normandy, France

April 2021 — April 2022

- 1 Presentation of few models
- 2 How to find the solutions
- 3 Magnitude of the diffusion
- 4 Perspectives

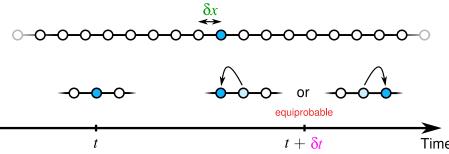
Let • be a single individual living along a discrete line

Let • be a single individual living along a discrete line



independent from the past

Let • be a single individual living along a discrete line

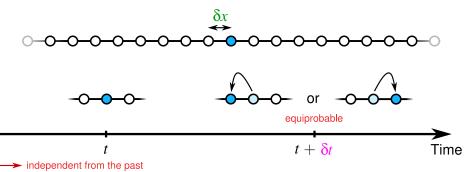


independent from the past

Let $v(t,x) = \mathbb{P}(\bullet \text{ is in } x \text{ at time } t)$

$$\frac{v(t+\delta t,x)-v(t,x)}{\delta t} = \frac{\delta x^2}{2\delta t} \frac{v(t,x-\delta x)-2v(t,x)+v(t,x+\delta x)}{\delta x^2}$$

Let • be a single individual living along a discrete line

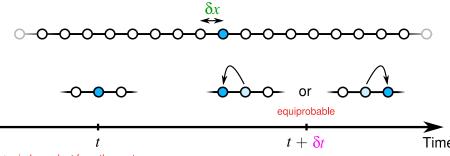


Let $v(t,x) = \mathbb{P}(\bullet \text{ is in } x \text{ at time } t)$

$$\frac{v(t+\delta t,x)-v(t,x)}{\delta t} = \frac{\delta x^2}{2\delta t} \frac{v(t,x-\delta x)-2v(t,x)+v(t,x+\delta x)}{\delta x^2}$$

Say this ratio is constant (equal d), we let $\delta x, \delta t \to 0$.

Let • be a single individual living along a discrete line

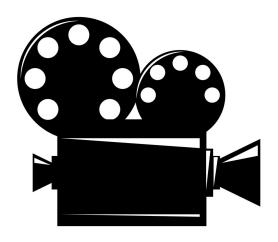


independent from the past

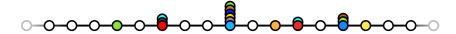
Let $v(t,x) = \mathbb{P}(\bullet \text{ is in } x \text{ at time } t)$

$$\partial_t v(t,x) = \boxed{d} \qquad \partial_{xx} v(t,x)$$

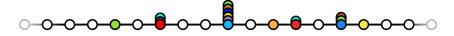
Heat equation



Take now a population of $n \in \mathbb{N}^*$ individuals



Take now a population of $n \in \mathbb{N}^*$ individuals



Law of large numbers guaranties that

v(t,x) =population density in x at time t

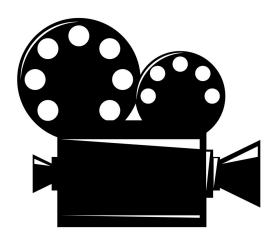
Take now a population of $n \in \mathbb{N}^*$ individuals

Law of large numbers guaranties that

$$v(t,x) =$$
 population density in x at time t satisfies

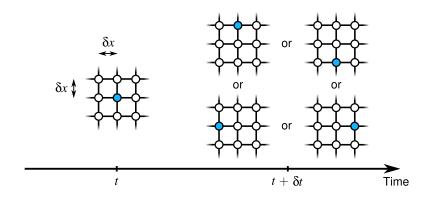
$$\begin{cases} \partial_t v = d\partial_{xx}v & t > 0, \quad x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

as $n \to \infty$.

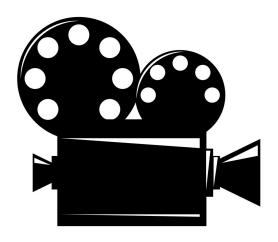


12

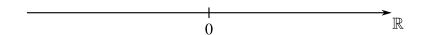
Generalisation in higher dimension is straightforward:



$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x, y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x, y) \in \mathbb{R}^2 \end{cases}$$



Until now, the population lived in a domain without frontier



Until now, the population lived in a domain without frontier

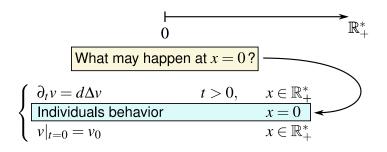
 \triangleright Simplest way to add boundary consists in cutting $\mathbb R$:

Until now, the population lived in a domain without frontier

 \triangleright Simplest way to add boundary consists in cutting \mathbb{R} :

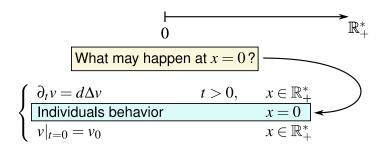
Until now, the population lived in a domain without frontier

 \triangleright Simplest way to add boundary consists in cutting \mathbb{R} :



Until now, the population lived in a domain without frontier

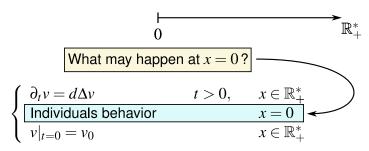
 \triangleright Simplest way to add boundary consists in cutting \mathbb{R} :



All individuals bounce back (**Neumann**): $-d\partial_x v|_{x=0} = 0$

Until now, the population lived in a domain without frontier

 \triangleright Simplest way to add boundary consists in cutting $\mathbb R$:

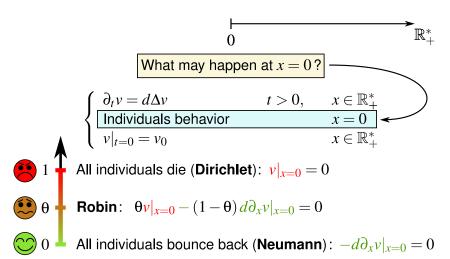


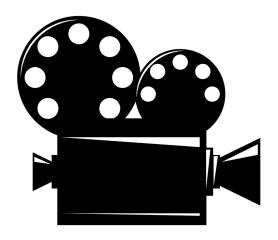
All individuals die (**Dirichlet**): $v|_{x=0} = 0$

All individuals bounce back (**Neumann**): $-d\partial_x v|_{x=0} = 0$

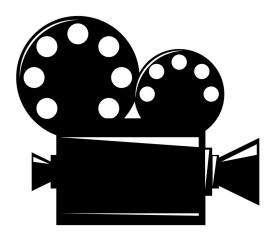
Until now, the population lived in a domain without frontier

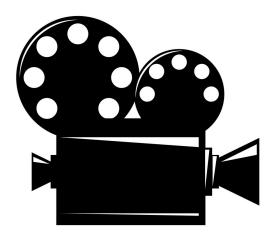
 \triangleright Simplest way to add boundary consists in cutting \mathbb{R} :

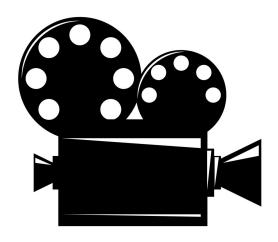




Alberta, Canada







Berestycki

Roquejoffre

Coulon

Rossi

Berestycki

2013

- Introduction
- Well-posedness
- > Comparison principle
- > KPP-reaction in the field
- Ni i reaction in the field
- > Reaction and drift on the road

2017

ightharpoonup In the cylinder $\mathbb{R} imes \mathcal{B}_N(0,L)$

Rossi Tellini Valdinoci

Berestycki

Ducasse Rossi

- 2018
- Principal eigen value
 - Conical domain { Ducasse

2015

- Non-local diffusion on the road
 Coulon Roquejoffre Rossi
- $\Rightarrow \mu = \mu(x), \nu = \nu(x)$ periodic { Giletti
- $\mu = \mu(x), v = v(x)$ periodic χ direction
- ➤ Long range exchanges { Pauthier

2019

Ecological niche facing climate change Berestycki Ducasse Rossi

- 2020
- \triangleright Periodic reaction in the *x*-direction { Affil

2016

- > Travelling waves Roquejoffre
- ightharpoonup In the strip $\mathbb{R} \times]0;L[$ { Tellini

2021

- ➤ General cylindrical domain
- ➢ Periodic reaction in the x-direction

Tellini

Bogosel

Giletti

- 1 Presentation of few models
- 2 How to find the solutions

- 3 Magnitude of the diffusion
- 4 Perspectives

Heat EQ in the whole space

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, & x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}[v(t,\bullet)](\xi) = \hat{v}(t,\xi) := \int_{\mathbb{R}} v(t,x) e^{-i\xi x} dx$$

Heat EQ in the whole space

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, & x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}[v(t,\bullet)](\xi) = \widehat{v}(t,\xi) := \int_{\mathbb{R}} v(t,x) e^{-i\xi x} dx$$

$$\partial_t v = d\partial_{xx} v$$
 \rightarrow $\partial_t \hat{v} = -d\xi^2 \hat{v}$

Heat EQ in the whole space

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, & x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}[v(t,\bullet)](\xi) = \hat{v}(t,\xi) := \int_{\mathbb{R}} v(t,x) e^{-i\xi x} dx$$

Linear 1st order ODE (variable is t) (d and ξ are parameters)

$$\partial_t v = d\partial_{xx} v$$
 $\partial_t \hat{v} = -d\xi^2 \hat{v}$

Heat EQ in the whole space

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, & x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}\left[v\left(t,\bullet\right)\right](\xi) = \hat{v}(t,\xi) := \int_{\mathbb{R}} v\left(t,x\right) e^{-i\xi x} dx$$

Linear 1st order ODE (variable is t) (d and ξ are parameters)

Heat EQ in the whole space

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, & x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}[v(t,\bullet)](\xi) = \hat{v}(t,\xi) := \int_{\mathbb{R}} v(t,x) e^{-i\xi x} dx$$

Linear 1st order ODE (variable is t) (d and ξ are parameters)

Heat EQ in the whole space

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, & x \in \mathbb{R} \\ v|_{t=0} = v_0 & x \in \mathbb{R} \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}[v(t,\bullet)](\xi) = \hat{v}(t,\xi) := \int_{\mathbb{R}} v(t,x) e^{-i\xi x} dx$$

Linear 1st order ODE (variable is t) (d and ξ are parameters)

$$\partial_{t}v = d\partial_{xx}v$$

$$\overrightarrow{\mathcal{F}}$$

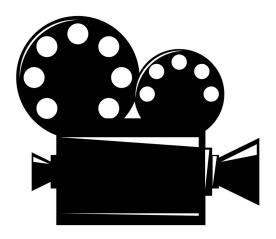
$$v(t,x) = \int_{\mathbb{R}} G(t,x-z)v_{0}(z)dz$$

$$\widehat{v}(t,\xi) = \widehat{v_{0}*G(t,\bullet)}(\xi)$$

2. How to find the solutions

 $G(t,x) := \frac{1}{\sqrt{4\pi dt^{-1}}} e^{-\frac{x^2}{4dt}}$

 $t \gg 1$



Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1 - \theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

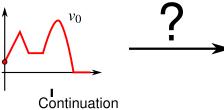
Heat EQ in the half space (continuation approach)

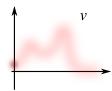
$$\begin{cases} \partial_{t}v = d\partial_{xx}v & t > 0, & x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_{x}v|_{x=0} = 0 & t > 0, & x = 0 \\ v|_{t=0} = v_{0} & x > 0 \end{cases}$$
Continuation
$$\tilde{v}_{0}$$

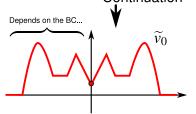
$$\tilde{v}_{0}$$

Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

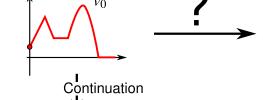


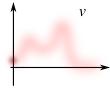


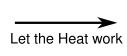


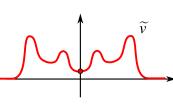
Heat EQ in the half space (continuation approach)

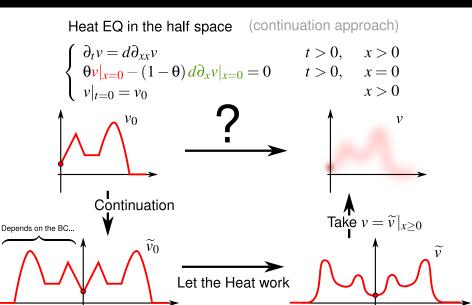
$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1 - \theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

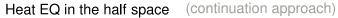




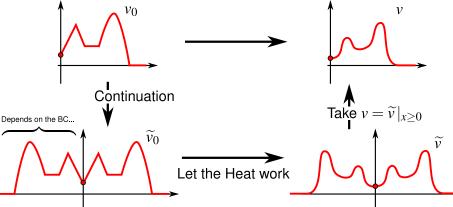








$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1 - \theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$



Heat EQ in the half space (continuation approach)

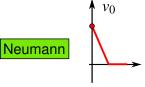
$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

Neumann

Dirichlet

Heat EQ in the half space (continuation approach)

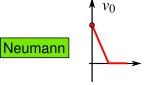
$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

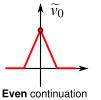


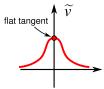
Dirichlet

Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$



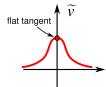




Dirichlet

Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$



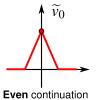
Dirichlet

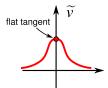
Neumann

Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

Neumann





Dirichlet

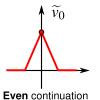
 v_0

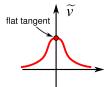
Odd continuation

Heat EQ in the half space (continuation approach)

$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

Neumann





Dirichlet

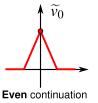
 v_0

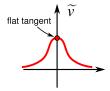
Odd continuation

Heat EQ in the half space (continuation approach)

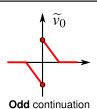
$$\begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1-\theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

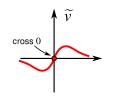
Neumann V₀

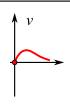


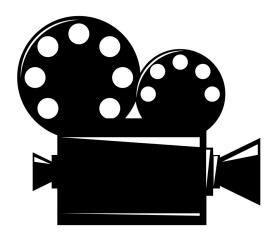


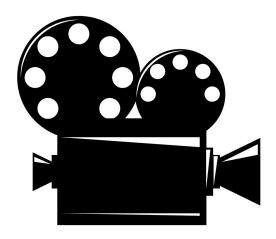
Dirichlet











Heat EQ in the half space (continuation approach)

$$(*) \begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1 - \theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

Proposition (Fundamental solution of the half Heat equation)

The solution to the Cauchy problem (*) is given by :

$$v(t,x) = \int_{\mathbb{R}_+} H_{\Theta}(t,x,z) v_{\Theta}(z) dz$$
 with

$$H_0(t,x,z) = G(t,x-z) + G(t,x+z) \qquad \qquad \text{if } \theta = 0$$

$$H_1(t,x,z) = G(t,x-z) - G(t,x+z)$$
 if $\theta = 1$

Heat EQ in the half space (continuation approach)

$$(*) \begin{cases} \partial_t v = d\partial_{xx} v & t > 0, \quad x > 0 \\ \theta v|_{x=0} - (1 - \theta) d\partial_x v|_{x=0} = 0 & t > 0, \quad x = 0 \\ v|_{t=0} = v_0 & x > 0 \end{cases}$$

Proposition (Fundamental solution of the half Heat equation)

The solution to the Cauchy problem (*) is given by :

$$v(t,x) = \int_{\mathbb{R}_+} H_{\Theta}(t,x,z) v_0(z) dz$$
 with

$$\begin{aligned} H_{\theta}\left(t,x,z\right) &= H_{1}\left(t,x,z\right) + 2G\left(t,x+z\right) \left(1 - A\sqrt{\pi dt^{\mathsf{T}}} \frac{\mathsf{Erfc}}{\Gamma} \left(\frac{2Adt + x + z}{2\sqrt{dt^{\mathsf{T}}}}\right)\right) \\ \mathsf{where}\, A &= \frac{\theta}{d(1-\theta)}, \qquad \Gamma(\ell) = e^{-\ell^{2}}, \qquad \mathsf{Erfc}\left(\ell\right) = \frac{2}{\sqrt{\pi^{\mathsf{T}}}} \int_{\ell}^{+\infty} e^{-z^{2}} dz, \qquad \mathsf{if}\,\, 0 < \theta < 1 \end{aligned}$$

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1 - \theta) d\partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta \frac{|y|}{|y|=0} - (1 - \theta) \frac{d}{\partial_x} v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}[v(t,\bullet,y)](\xi) = \widehat{v}(t,\xi,y) := \int_{\mathbb{R}} v(t,x,y) e^{-i\xi x} dx$$

Breaks
$$\partial_{xx}$$
: $\widehat{\partial_{xx}v(t,\xi,y)} = -\xi^2 \hat{v}(t,\xi,y)$

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1 - \theta) d \partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

Fourier transform on the variable x

$$\mathcal{F}\left[v\left(t,\bullet,y\right)\right](\xi) = \widehat{v}(t,\xi,y) := \int_{\mathbb{R}} v\left(t,x,y\right) e^{-i\xi x} dx$$

Breaks
$$\partial_{xx}$$
: $\widehat{\partial_{xx}v(t,\xi,y)} = -\xi^2 \hat{v}(t,\xi,y)$

Laplace transform on the variable t

$$\mathcal{L}\left[v\left(\bullet,x,y\right)\right]\left(s\right) = \widehat{v}\left(s,x,y\right) := \int_{0}^{+\infty} v\left(t,x,y\right) e^{-st} dt$$

Breaks ∂_t :

$$\widehat{\partial_t v(s,x,y)} = s \widehat{v}(s,x,y) - v_0(x,y)$$

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1 - \theta) d \partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$x$$
-Fourier/ t -Laplace transform
$$\mathcal{FL}\left[v\left(\bullet,\bullet,y\right)\right]\left(s,\xi\right) = \widehat{v}\left(s,\xi,y\right) := \int_{\mathbb{R}} \int_{0}^{+\infty} v\left(t,x,y\right) \; e^{-(st+i\xi x)} dt dx$$

Breaks ∂_t and ∂_{xx} !

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_{t}v = d\left(\partial_{xx}v + \partial_{yy}v\right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1-\theta) d\partial_{x}v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_{0} & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

 $\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\mathcal{FL}} \widehat{\partial_t v} = \widehat{d \left(\partial_{xx} v + \partial_{yy} v \right)}$

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_{t}v = d\left(\partial_{xx}v + \partial_{yy}v\right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1-\theta) d\partial_{x}v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_{0} & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_{t}v = d\left(\partial_{xx}v + \partial_{yy}v\right) \xrightarrow{\mathcal{FL}} \widehat{\partial_{t}v} = \widehat{d\left(\partial_{xx}v + \partial_{yy}v\right)} \xrightarrow{\mathcal{FL} \text{ properties}}$$

$$d\partial_{yy}\widehat{v}(s, \xi, y) - \left(s + d \xi^{2}\right)\widehat{v}(s, \xi, y) = -\widehat{v_{0}}(\xi, y)$$

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1-\theta) d \partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\text{\mathcal{FL} properties}} d \partial_y \hat{v}(s, \xi, y) - \left(s + d \xi^2 \right) \hat{v}(s, \xi, y) = -\hat{v_0}(\xi, y)$$

Linear 2^{nd} order ODE (variable is y) (d, s and ξ play as parameters)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1 - \theta) d \partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\mathcal{FL}} \widehat{\partial_t v} = \widehat{d \left(\partial_{xx} v + \partial_{yy} v \right)} -$$

 $-d\partial_{yy}\widehat{v}(s,\xi,y) - \left(s + d\xi^{2}\right)\widehat{v}(s,\xi,y) = -\widehat{v_{0}}(\xi,y)$

Linear 2nd order ODE

$$\hat{\vec{v}}(s,\xi,y) = e^{\frac{\sigma}{\sqrt{d}}y} \left(C_1 - \frac{1}{2\sqrt{d}} \int_0^y e^{-\frac{\sigma}{\sqrt{d}}\omega} \hat{v}_0(\xi,\omega) d\omega \right)$$

$$+e^{-\frac{\sigma}{\sqrt{d}}y}\left(C_2+\frac{1}{2\sqrt{d}}\sigma\int_0^y e^{\frac{\sigma}{\sqrt{d}}\omega}\hat{v_0}(\xi,\omega)d\omega\right)$$

 \mathcal{FL} properties

 $\sigma = \sqrt{s + d\xi^2}$

Solve

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_{t}v = d\left(\partial_{xx}v + \partial_{yy}v\right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0\\ \theta v|_{y=0} - (1-\theta) d\partial_{x}v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0\\ v|_{t=0} = v_{0} & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\mathcal{FL}} \widehat{\partial_t v} = \widehat{d \left(\partial_{xx} v + \partial_{yy} v \right)} \xrightarrow{\mathcal{FL}}$$

 $d\partial_{yy}\hat{\hat{v}}(s,\xi,y) - \left(s + d\xi^2\right)\hat{\hat{v}}(s,\xi,y) = -\hat{v_0}(\xi,y)$

Linear 2nd order ODE

Solve

Constants wrt. y to be determined

 \mathcal{FL} properties

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1 - \theta) d\partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\mathcal{FL}} \widehat{\partial_t v} = \widehat{d \left(\partial_{xx} v + \partial_{yy} v \right)} -$$

 $\partial_{yy}\hat{v}(s,\xi,y) - \left(s+d\xi^2\right)\hat{v}(s,\xi,y) = -\hat{v_0}(\xi,y)$

Linear 2nd order ODE

 $\hat{v} = 0$ as $y \to +\infty$ (get rid of Tykhonov solutions)

Constants wrt. y to be determined

Robin BC at v = 0

How to find the solutions

Solve

 \mathcal{FL} properties

Heat EQ in the half space (Fourier/Laplace approach)

 \mathcal{FL} properties

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1 - \theta) d \partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\mathcal{FL}} \widehat{\partial_t v} = \widehat{d \left(\partial_{xx} v + \partial_{yy} v \right)} -$$

 $\underbrace{d\partial_{yy}\hat{v}(s,\xi,y) - \left(s + d\xi^{2}\right)\hat{v}(s,\xi,y) = -\hat{v_{0}}(\xi,y)}_{}$

Linear 2nd order ODE

$$\hat{\hat{v}}(s,\xi,y) = \frac{1}{2\sqrt{d^{\mathsf{I}}}} \int_{0}^{+\infty} \left(\frac{e^{-\frac{\sigma}{\sqrt{d^{\mathsf{I}}}}|y-\omega|}}{\sigma} + \frac{e^{-\frac{\sigma}{\sqrt{d^{\mathsf{I}}}}}(y+\omega)}}{\sigma} - 2A\sqrt{d^{\mathsf{I}}} \frac{e^{-\frac{\sigma}{\sqrt{d^{\mathsf{I}}}}}(y+\omega)}}{\sigma\left(\sigma + A\sqrt{d^{\mathsf{I}}}\right)} \right) \hat{v_0}(\xi,\omega) d\omega$$

 $\sigma = \sqrt{s + d\xi^2}$

Solve

Heat EQ in the half space (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) & t > 0, \quad x \in \mathbb{R}, \quad y > 0 \\ \theta v|_{y=0} - (1-\theta) d\partial_x v|_{y=0} = 0 & t > 0, \quad x \in \mathbb{R}, \quad y = 0 \\ v|_{t=0} = v_0 & x \in \mathbb{R}, \quad y > 0 \end{cases}$$

$$\partial_t v = d \left(\partial_{xx} v + \partial_{yy} v \right) \xrightarrow{\mathcal{FL}} \widehat{\partial_t v} = \widehat{d \left(\partial_{xx} v + \partial_{yy} v \right)} \xrightarrow{\mathcal{FL} \text{ properties}}$$

$$\underline{d\partial_{yy} \widehat{v}(s, \xi, y) - \left(s + d \xi^2 \right) \widehat{v}(s, \xi, y) = -\widehat{v_0}(\xi, y)}$$
Linear 2nd order ODE

"Only" remains then to take the inverse Fourier/Laplace transform...

$$v(t,x,y) = \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} H_{\theta}(t,x,y,z,\omega) v_{0}(z,\omega) dz d\omega$$

$$\begin{aligned} \partial_t v &= d\Delta v & t > 0, \\ -d\partial_y v|_{y=0} &= \mu u - vv|_{y=0} & t > 0, \\ \partial_t u &= D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, \end{aligned}$$

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t > 0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, & x \in \mathbb{R}. \end{cases} \begin{cases} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{cases}$$

Heat on the field-road model (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t > 0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, & x \in \mathbb{R}. \end{cases} \begin{cases} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{cases}$$

Theorem (Alfaro, Ducasse, Tréton, 22')

(Solution of the field-road diffusive model)

The solution to the latter Cauchy problem is

$$\begin{split} v\left(t,x,y\right) &= V\left(t,x,y\right) + \frac{\mu}{\sqrt{d^{l}}} \int_{\mathbb{R}} \Lambda\left(t,z,y\right) \ u_{0}\left(x-z\right) \ dz \\ &+ \frac{\mu \nu}{\sqrt{d^{l}}} \int_{0}^{t} \int_{\mathbb{R}} \Lambda\left(s,z,y\right) \ V|_{y=0}\left(t-s,x-z\right) \ dz ds, \end{split}$$

$$u(t,x) = e^{-\mu t}U(t,x) + \nu \int_0^t e^{-\mu(t-s)} \int_{\mathbb{R}} G(t-s,x-z) \ \nu|_{y=0}(s,z) \ dzds$$

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t > 0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, & x \in \mathbb{R}. \end{cases} \begin{cases} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{cases}$$

Theorem (Alfaro, Ducasse, Tréton, 22') (Solution of the field-road diffusive model)

The solution to the latter Cauchy problem is

$$v(t,x,y) = V(t,x,y) + \frac{\mu}{\sqrt{d'}} \int_{\mathbb{R}} \Lambda(t,z,y) \ u_0(x-z) \ dz$$

$$+\frac{\mu \nu}{\sqrt{d^{1}}} \int_{0}^{t} \int_{\mathbb{R}} \Lambda(s,z,y) \frac{V|_{y=0} (t-s,x-z)}{|V|_{y=0} (t-s,x-z)} dz ds,$$

$$u(t,x) = e^{-\mu t}U(t,x) + \nu \int_0^t e^{-\mu(t-s)} \int_{\mathbb{R}} G(t-s,x-z) \ \nu|_{y=0}(s,z) \ dzds$$

where V = V(t,X) is the solution to the Cauchy problem

$$\left\{ \begin{array}{ll} \partial_t V = d\Delta V, & t>0, \quad x\in\mathbb{R}\,, \quad y>0, \\ vV|_{y=0} - d\partial_y V|_{y=0} = 0, & t>0, \quad x\in\mathbb{R}\,, \\ V|_{t=0} = v_0, & x\in\mathbb{R}\,, \quad y>0, \end{array} \right.$$

Heat on the field-road model (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t > 0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, & x \in \mathbb{R}. \end{cases} \begin{cases} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{cases}$$

Theorem (Alfaro, Ducasse, Tréton, 22') (Solution of the field-road diffusive model)

$$v(t,x,y) = V(t,x,y) + \frac{\mu}{\sqrt{d!}} \int_{\mathbb{R}} \Lambda(t,z,y) \ u_0(x-z) \ dz + \frac{\mu v}{\sqrt{d!}} \int_{0}^{t} \int_{\mathbb{R}} \Lambda(s,z,y) \ V|_{y=0} (t-s,x-z) \ dz ds,$$

$$u(t,x) = e^{-t}U(t,x) + v \int_0^t e^{-\mu(t-s)} \int_{\mathbb{R}} G(t-s,x-z) |v|_{y=0}(s,z) dzds$$

where

U = U(t,x) is the solution to the Cauchy problem

$$\begin{cases} \partial_t U = D \partial_{xx} U, & t > 0, \quad x \in \mathbb{R}, \\ U|_{t=0} = u_0, & x \in \mathbb{R}, \end{cases}$$

2. How to find the solutions 73

Heat on the field-road model (Fourier/Laplace approach)

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t > 0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, & x \in \mathbb{R}. \end{cases} \begin{cases} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{cases}$$

Theorem (Alfaro, Ducasse, Tréton, 22') (Solution of the field-road diffusive model)

The solution to the latter Cauchy problem is

$$v(t, x, y) = V(t, x, y) + \frac{\mu}{\sqrt{d!}} \int_{\mathbb{R}} \Lambda(t, z, y) \ u_0(x - z) \ dz + \frac{\mu \mathbf{v}}{\sqrt{d!}} \int_{0}^{t} \int_{\mathbb{R}} \Lambda(s, z, y) \ V|_{y=0} (t - s, x - z) \ dz ds,$$

$$u(t,x) = e^{-\mu t}U(t,x) + v \int_0^t e^{-\mu(t-s)} \int_{\mathbb{R}} G(t-s,x-z) v|_{y=0}(s,z) dzds$$

where

G = G(t,x) denotes the one-dimensional D-diffusive Heat-kernel :

$$G(t,x) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}},$$

Heat on the field-road model (Fourier/Laplace approach)

$$\begin{cases} \begin{array}{ll} \partial_t v = d\Delta v & t>0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t>0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t>0, & x \in \mathbb{R}. \end{array} \end{cases} \begin{cases} \begin{array}{ll} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{array} \end{cases}$$

Theorem (Alfaro, Ducasse, Tréton, 22') (Solution of the field-road diffusive model)

$$v(t,x,y) = V(t,x,y) + \frac{\mu}{\sqrt{d'}} \int_{\mathbb{R}} \frac{\Lambda(t,z,y)}{\sqrt{d'}} u_0(x-z) dz + \frac{\mu \nu}{\sqrt{d'}} \int_0^t \int_{\mathbb{R}} \frac{\Lambda(s,z,y)}{\sqrt{(s,z,y)}} V|_{y=0}(t-s,x-z) dz ds,$$

$$u(t,x) = e^{-\mu t}U(t,x) + \nu \int_0^t e^{-\mu(t-s)} \int_{\mathbb{R}} G(t-s,x-z) \ \nu|_{y=0}(s,z) \ dzds$$

where

$$\Lambda(t,x,y) = \frac{e^{-\frac{y^2}{4dt}}}{2\pi} \int_{\mathbb{R}^{N-1}} \left[a \alpha \Phi_{\alpha} + b \beta \Phi_{\beta} + c \gamma \Phi_{\gamma} \right] (t,\xi,y) e^{-dt \xi^2 + i \xi x} d\xi,$$

Heat on the field-road model

(Fourier/Laplace approach)

$$\begin{cases} \begin{array}{ll} \partial_t v = d\Delta v & t>0, & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t>0, & x \in \mathbb{R} \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t>0, & x \in \mathbb{R}. \end{array} \end{cases} \begin{cases} \begin{array}{ll} v|_{t=0} = v_0 & (x,y) \in \mathbb{R} \times \mathbb{R}_+^* \\ u|_{t=0} = u_0 & x \in \mathbb{R}. \end{array} \end{cases}$$

Theorem (Alfaro, Ducasse, Tréton, 22')

(Solution of the field-road diffusive model)

$$\Lambda(t,x,y) = \frac{e^{-\frac{y^{2}}{4dt}}}{2\pi} \int_{\mathbb{R}^{N-1}} \left[a \alpha \Phi_{\alpha} + b \beta \Phi_{\beta} + c \gamma \Phi_{\gamma} \right] (t,\xi,y) e^{-dt \xi^{2} + i \xi x} d\xi,$$

 $\blacktriangleright (\alpha,\beta,\gamma) = (\alpha,\beta,\gamma)\,(\xi) \text{ being the three complex roots of the δ-indexed polynomials}$

$$P_{\delta}(\sigma) = \sigma^3 + rac{\mathrm{v}}{\sqrt{d'}} \, \sigma^2 + (\mu + \delta) \, \sigma + rac{\mathrm{v} \, \delta}{\sqrt{d'}}, \qquad \text{with } \delta = (D - d) \, \xi^2 \, ,$$

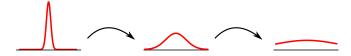
$$\Rightarrow a = \frac{1}{(\alpha - \beta)(\alpha - \gamma)},$$
 $b = \frac{1}{(\beta - \alpha)(\beta - \gamma)},$ $c = \frac{1}{(\gamma - \alpha)(\gamma - \beta)},$

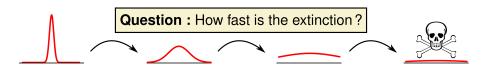
2. How to find the solutions 7

1 Presentation of few models

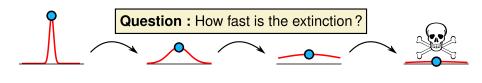
2 How to find the solutions

- 3 Magnitude of the diffusion
- 4 Perspectives





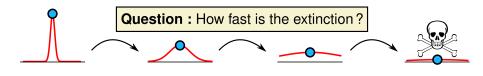
Diffusion provokes extinction of the population by spreading



> We look at the max in space

3. Magnitude of the diffusion 84

> Diffusion provokes extinction of the population by spreading

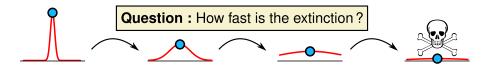


> We look at the max in space and expect that

$$\|v(t,\cdot)\|_{L^{\infty}} \le \frac{c}{t^k}$$

3. Magnitude of the diffusion

> Diffusion provokes extinction of the population by spreading



> We look at the max in space and expect that

$$\|v(t,\cdot)\|_{L^{\infty}} \leq \frac{c}{t^k}$$

- Large *k* means **aggressive** diffusion
- \bigcirc Small k means **nice** diffusion

Classical example:
$$\begin{cases} \partial_t v = d\Delta v & t > 0, \quad (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{cases}$$

Classical example:

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x, y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x, y) \in \mathbb{R}^2 \end{cases}$$

$$|v(t,x,y)| = |G(t,\bullet)*v_0|(x,y)$$

Classical example:

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x, y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x, y) \in \mathbb{R}^2 \end{cases}$$

$$|v(t,x,y)| = |G(t,\bullet)*v_0|(x,y) = \left|\frac{1}{4\pi dt}e^{-\frac{\|\bullet\|^2}{4dt}}*v_0\right|(x,y)$$

> Classical example:

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x, y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x, y) \in \mathbb{R}^2 \end{cases}$$

$$|v(t,x,y)| = |G(t,\bullet) * v_0|(x,y) = \left| \frac{1}{4\pi dt} e^{-\frac{\|\bullet\|^2}{4dt}} * v_0 \right|(x,y)$$

$$\leq \left\| \frac{1}{4\pi dt} e^{-\frac{\|\bullet\|^2}{4dt}} \right\|_{L^{\infty}} \times \|v_0\|_{L^1}$$

> Classical example:

$$\begin{cases} \partial_t v = d\Delta v & t > 0, & (x, y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x, y) \in \mathbb{R}^2 \end{cases}$$

$$|v(t,x,y)| = |G(t,\bullet) * v_0|(x,y) = \left| \frac{1}{4\pi dt} e^{-\frac{\|\bullet\|^2}{4dt}} * v_0 \right|(x,y)$$

$$\leq \left\| \frac{1}{4\pi dt} e^{-\frac{\|\bullet\|^2}{4dt}} \right\|_{L^{\infty}} \times \|v_0\|_{L^1}$$

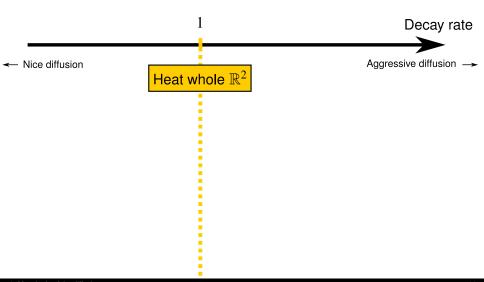
$$\|v(t,\cdot)\|_{L^{\infty}} \le \frac{c(d,\|v_0\|_{L^1})}{t^{1}}$$

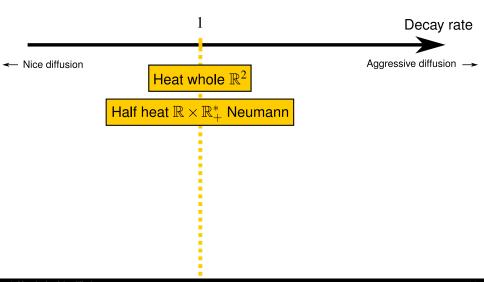
> Outcomes for our problems :

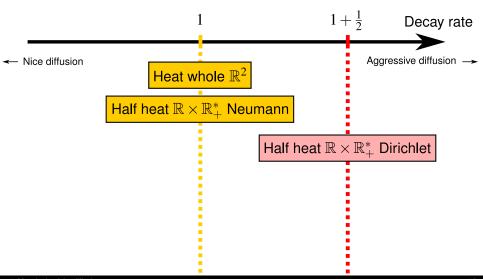
Decay rate

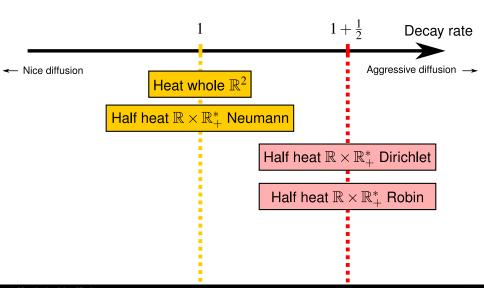
→ Nice diffusion

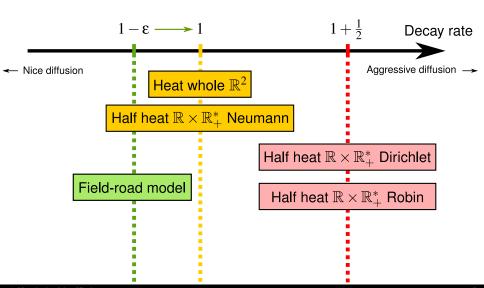
Aggressive diffusion →

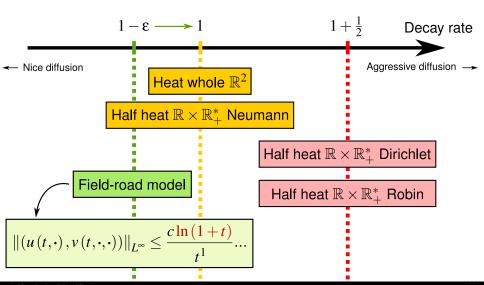










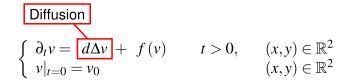


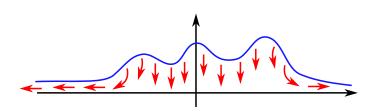
1 Presentation of few models

2 How to find the solutions

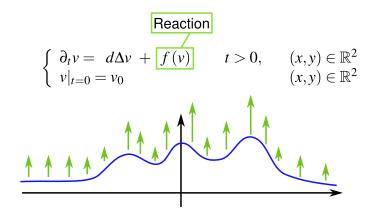
- 3 Magnitude of the diffusion
- 4 Perspectives

> Adding births and deaths

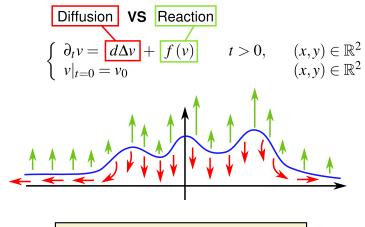




> Adding births and deaths

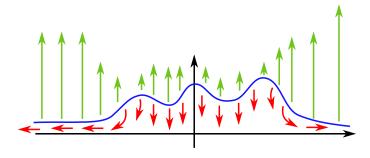


> Adding births and deaths



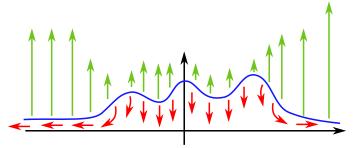
Question: Persistence or extinction?

Adding births and deaths
$$\left\{ \begin{array}{ll} \partial_t v = \, d\Delta v + f \, (v) & t > 0, \; (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{array} \right.$$

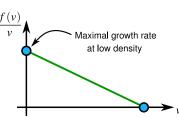


Logistic f(v) = v(1-v)

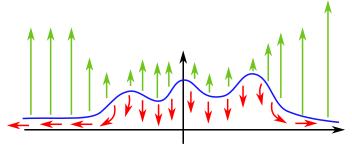
Adding births and deaths
$$\left\{ \begin{array}{l} \partial_t v = \, d\Delta v + f(v) & t>0, \ (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{array} \right.$$

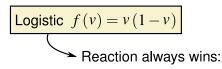


Logistic f(v) = v(1-v)

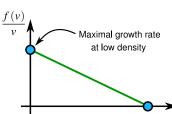


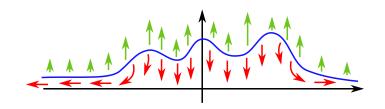
Adding births and deaths
$$\left\{ \begin{array}{l} \partial_t v = \, d\Delta v + f(v) & t>0, \ (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{array} \right.$$





Systematic invasion

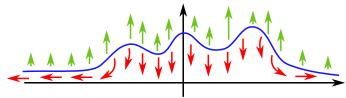




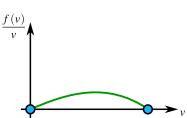
Monostable
$$f(v) = v^{1+p}(1-v)$$

Adding births and deaths
$$\left\{ \begin{array}{l} \partial_t v = \, d\Delta v + f \left(v \right) & t > 0, \; (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{array} \right.$$

Allee effect, ie harder to grow at low density



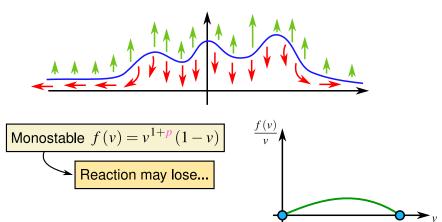
Monostable
$$f(v) = v^{1+p}(1-v)$$



$$ightharpoonup$$
 Adding births and deaths $\int \, \partial_t v = \, d\Delta v$

Adding births and deaths
$$\begin{cases} \partial_t v = d\Delta v + f(v) & t > 0, \ (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{cases}$$

Allee effect, ie harder to grow at low density



$$\begin{cases} \partial_t v = d\Delta v + v^{1+p} (1-v) & t > 0, & (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{cases}$$

Theorem (Aronson, Weinberger, 78')

Let $p_F := 1$, then

Soft Allee effect if 0 , the invasion is systematic,

Hard Allee effect if $p > p_F$, there are some "small enough" initial data which shall become extinct

$$\begin{cases} \partial_t v = d\Delta v + v^{1+p} (1-v) & t > 0, & (x,y) \in \mathbb{R}^2 \\ v|_{t=0} = v_0 & (x,y) \in \mathbb{R}^2 \end{cases}$$

Theorem (Aronson, Weinberger, 78')

Let $p_F := 1$ then

Soft Allee effect if 0 , the invasion is systematic,

Hard Allee effect if $p>p_F$, there are some "small enough" initial data which shall become extinct

straightly comes from $\|v(t, \cdot)\|_{L^\infty} \leq rac{\mathcal{C}}{t^1}$...

Open question: can we find such a result for

$$\begin{cases} \partial_t v = d\Delta v + v^{1+p} (1-v) & t > 0, & x \in \mathbb{R}, \quad y > 0 \\ -d\partial_y v|_{y=0} = \mu u - vv|_{y=0} & t > 0, & x \in \mathbb{R}, \quad y = 0 \\ \partial_t u = D\partial_{xx} u + vv|_{y=0} - \mu u & t > 0, & x \in \mathbb{R} \end{cases}$$

now we know the decay rate of the diffusive field-road model?...

Thanks for your attention!

Matthieu Alfaro

Romain Ducasse