
Bridging bulk and surface:
An interacting particle system

towards the field-road diffusion model

Matthieu Alfaro1, Mustapha Mourragui2 and Samuel Tréton3

Abstract

We recover the so-called field-road diffusion model as the hydrodynamic limit of
an interacting particle system. The former consists of two parabolic PDEs posed
on two sets of different dimensions (a “field” and a “road” in a population dynamics
context), and coupled through exchange terms between the field’s boundary and
the road. The latter stands as a Symmetric Simple Exclusion Process (SSEP):
particles evolve on two microscopic lattices following a Markov jump process, with
the constraint that each site cannot host more than one particle at the same time.
The system is in contact with reservoirs that allow to create or remove particles at
the boundary sites. The dynamics of these reservoirs are slowed down compared to
the diffusive dynamics, to reach the reactions and the boundary conditions awaited
at the macroscopic scale. This issue of bridging two spaces of different dimensions is,
as far as we know, new in the hydrodynamic limit context, and raises perspectives
towards future related works.
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1 Introduction

The goal of the present work is to derive the field-road diffusion model as the hydrody-
namic limit of an interacting particle system. The former was introduced by Berestycki,
Roquejoffre and Rossi [10] in order to describe spread of diseases or invasive species in
presence of networks with accelerated propagation. It consists of two parabolic PDEs
posed on two sets of different dimensions (a field and a road in a population dynam-
ics context), and coupled through exchange terms between the field’s boundary and the
road — see subsection 1.1 for details. To asymptotically retrieve this deterministic model
from a stochastic interacting particle system, we consider a Symmetric Simple Exclusion
Process (SSEP) which evolves both on a finite discrete cylinder (the field) and its lower
boundary (the road). Characterizing the SSEP, the microscopic dynamics is tied with a
simple exclusion rule that forces each site to host at most one particle at the same time.
To manage in particular the coupling between the field and the road, the system is in
contact with reservoirs that allow to create or remove particles at the boundary sites of
the cylinder. The activity of these reservoirs is slowed down compared to the diffusive
dynamics, in order to align with the exchange terms awaited at the macroscopic scale.
The originality of our analysis stands in the coupling between two domains of different
dimensions, an issue that, as far as we know, has never been considered when recovering
diffusive PDEs as the hydrodynamic limit of exclusion processes — see subsection 1.2.

1.1 The field-road model for fast diffusion channels

Recently, there has been a growing recognition of the importance of fast diffusion channels
on biological invasions: for instance, an accidental transportation via human activities of
some individuals towards northern and eastern France may be the cause of accelerated
propagation of the pine processionary moth [46]. In Canada, some GPS data revealed that
wolves travel faster along seismic lines (i.e. narrow strips cleared for energy exploration),
thus increasing their chances to meet a prey [41]. It is also acknowledged that fast diffusion
channels (roads, airlines, etc.) play a central role in the propagation of epidemics. As is
well known, the spread of the black plague, which killed about a third of the European
population in the 14th century, was favoured by the trade routes, especially the Silk Road,
see [49]. More recently, some evidences of the the radiation of the COVID epidemic along
highways and transportation infrastructures were found [31].

In this context, the field-road model introduced by Berestycki, Roquejoffre and Rossi
[10] writes as

∂tv = d∆v + f(v), t > 0, x ∈ Rp−1, y > 0,
−d∂yv|y=0 = αu− βv|y=0, t > 0, x ∈ Rp−1,

∂tu = D∆u+ βv|y=0 − αu, t > 0, x ∈ Rp−1.

(1.1)

The mathematical problem then amounts to describing survival and propagation in a non-
standard physical space: the geographical domain consists in the half-space (the “field”)
x ∈ Rp−1, y > 0, bordered by the hyperplane (the “road”) x ∈ Rp−1, y = 0. In the field,
individuals diffuse with coefficient d > 0 and their density is given by v = v(t, x, y). In
particular ∆v has to be understood as ∆xv + ∂yyv. On the road, individuals typically
diffuse faster (D > d) and their density is given by u = u(t, x). In particular ∆u has
to be understood as ∆xu. The exchanges of population between the road and the field
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are described by the second equation in system (1.1), where α > 0 and β > 0. These
boundary conditions, and the zeroth-order term on the road, link the field and the road
equations and are the core of the model (see also the volume-surface systems [18], [26],
[23] in the context of chemical processes or asymmetric stem cell division).

In a series of works [10, 9, 11, 12], Berestycki, Roquejoffre and Rossi studied the
field-road system with p = 2 and f a Fisher-KPP nonlinearity. They shed light on an
acceleration phenomenon: when D > 2d, the road enhances the global diffusion and
the spreading speed exceeds the standard Fisher-KPP invasion speed. This new feature
has stimulated many works and, since then, many related problems taking into account
heterogeneities, more complex geometries, nonlocal diffusions, etc. have been studied
[5, 6], [33], [44, 45, 43], [52], [47], [22], [7, 8], [1, 54], [16].

Very recently, the purely diffusive field-road system — obtained by letting f ≡ 0
in (1.1) — has attracted some attention. Hence, an explicit expression for both the
fundamental solution and the solution to the associated Cauchy problem, and a sharp
(possibly up to a logarithmic term) decay rate of the L∞ norm of the solution were
obtained in [3]. In a bounded domain, the long time convergence was studied [2] through
entropy methods, in both the continuous and the discrete (finite volume scheme) settings.

From now on, we thus consider the purely diffusive field-road model. By using the
rescaling

ṽ(t, x, y) = v
(
t

λ2 ,
x

λ
,
y

λ

)
, ũ(t, x) = λu

(
t

λ2 ,
x

λ

)
, λ = α

β
,

we see that it is enough to consider the case α = β. Also, for p ≥ 2, we work in the
p-dimensional open finite cylinder

Λ := Tp−1 × (0, 1) ,

where T is the one-dimensional torus R/Z. For v, we impose the zero Neumann boundary
conditions on the upper boundary Tp−1 × {y = 1}. This insures the conservation of the
total mass, namely

∫
Tp−1×(0,1) v(t, x, y)dxdy +

∫
Tp−1 u(t, x)dx, therefore modeling a purely

diffusive process within a closed environment. Denoting n the unit outward normal vector
to ∂Λ, the considered system is thus

∂tv = d∆v, t > 0, x ∈ Tp−1, y ∈ (0, 1) ,
−d∂yv|y=0 = αu− αv|y=0, t > 0, x ∈ Tp−1, y = 0,
∂tu = D∆u+ αv|y=0 − αu, t > 0, x ∈ Tp−1,
∂v
∂n

= 0, t > 0, x ∈ Tp−1, y = 1,

(1.2)

supplemented with an initial condition
 v|t=0 = v0 ∈ L∞(Λ) ∩ [0, 1]Λ , x ∈ Tp−1, y ∈ (0, 1) ,

u|t=0 = u0 ∈ L∞(Tp−1) ∩ [0, 1]T
p−1

, x ∈ Tp−1.
(1.3)

Note that, given the linear nature of the system (1.2), the use of initial data bounded by
1 is a simplification that does not compromise the generality of our analysis. This choice
is actually imposed by the exclusion rule, see Remark 2.3.
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1.2 Interacting Particle Systems and Simple Exclusion Processes

The field of interacting particle systems is a branch of probability theory that emerged
in the early 1970s, focusing on Markov processes inspired by models from statistical
physics and biology. Analysis occurs at both the microscopic level of particle dynamics
and by scaling from microscopic to macroscopic levels. This involves space and time
renormalization procedures to derive hydrodynamic limits, represented by PDEs that
describe key model quantities such as particle densities.

Introduced by Frank Spitzer in [50], the exclusion process are interacting particle
systems from which can be recovered a large variety of diffusive systems driven out of
equilibrium, see the pioneering works [51], [40, 39]. We refer to the seminal book [34] for
the complete derivation of the heat equation on a torus from a nearest-neighbor exclusion
process which consists in a collection of continuous-time random walks evolving on a
lattice (see below for details).

When boundaries are considered, the system is in contact with some so-called reser-
voirs, see [36], [19, 21, 20] where Dirichlet boundary conditions are recovered. Recently,
a lot of effort has been put in understanding the case of exclusion process whose dynam-
ics is perturbed by the presence of a slow bond [15], [27], or by slow boundary effects
[27, 28, 29], [4], [35], [37], [13].

Let us comment more precisely on some of the outcomes obtained in [4]. The authors
specifically examine the hydrodynamic behavior of a symmetric simple exclusion process
with slow boundary. This means that, at the boundary sites, particles can be born or die
at slower rates (depending on the scaling parameter N) than events occurring in the bulk.
The hydrodynamic limit is then the heat equation, supplemented with Dirichlet, Robin,
or Neumann boundary conditions, depending on the scaling of the boundary rates.

The present work stands at the crossroads of this framework, the reaction-diffusion
issues and the epidemiology/population dynamics modeling. Regarding this, let us men-
tion the very recent work [42] where a reaction-diffusion system modeling the sterile insect
technique is retrieved. The very originality of our work stands in the fact that the con-
sidered system is posed on sets of different dimensions a case which, as far as we know, is
considered for the first time in the interacting particle system literature.

2 Notations and main result

All the notations used in this paper are gathered in the Table of Notations at the end of
this document.

2.1 Sets and related notations

As announced above, in the macroscopic setting, we work in the p-dimensional open finite
cylinder

Λ := Tp−1 × (0, 1),

equipped with its Borel σ-algebra, where T designates the one-dimensional torus R/Z.
The boundary of the domain is denoted

Γ := ∂Λ = {(x, y) ∈ Λ | y = 0 or y = 1} = Tp−1 × {0, 1},
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with Λ the closure of Λ. We partition Γ into two parts representing the lower and upper
boundaries of the cylinder:

Γlow := Tp−1 × {0} and Γup := Tp−1 × {1}.

At the microscopic level, given an integer N ≥ 2, we define ΛN and ΓN as the cor-
responding discrete microscopic sets. Specifically, by letting TN := Z/NZ the discrete
one-dimensional torus of length N , and using the notation Ja; bK := [a, b] ∩ Z for any
a, b ∈ R,

ΛN := Tp−1
N × J1;N − 1K

represents the cylinder in Zp of height N − 1 and basis Tp−1
N , its boundary being

ΓN := {(i, j) ∈ ΛN | j = 1 or N − 1} = Tp−1
N × {1, N − 1}.

Similarly, ΓN = Γlow
N ∪ Γup

N with

Γlow
N := Tp−1

N × {1} and Γup
N := Tp−1

N × {N − 1}.

The elements of Λ are represented by

= (x, y) and = (z, ω),

with x, z ∈ Tp−1 and y, ω ∈ [0, 1], while those of ΛN are symbolized by the letters

= (i, j) and = (k, ℓ),

with i, k ∈ Tp−1
N and j, ℓ ∈ J1;N − 1K.

2.2 Description of the microscopic model

We consider the evolution of two kinds of interacting particles on the lattices ΛN (the
microscopic field) and Γlow

N (the microscopic road). The associated stochastic dynamics is
described by the temporal evolution of a Markov process denoted by (ηt, ξt)t∈[0,T ], where
T > 0 is a given temporal horizon. Particles tied to the dynamics of η (the “field-
particles”) evolve in the whole microscopic field ΛN , while the particles corresponding to
the dynamics of ξ (the “road-particles”) evolve solely on the microscopic road Γlow

N , that
stands as the lower frontier of the microscopic field1. Both types of particles follow an
exclusion rule in its respective environment: each site = (i, j) ∈ ΛN can host at most
one field-particle, and similarly, each site i ∈ Γlow

N can host at most one road-particle.
Note in particular that at a site i ∈ Γlow

N , there may be a field-particle and a road-particle.
The overall dynamics emerge from the superposition of several independent ones,

which are individually specified below and collectively depicted in Figure I:

1It is important to note that the microscopic road Γlow
N is actually embedded in Zp−1. For the purpose

of simplifying notations and facilitating understanding, we often make an identification between (i, 1) and
i, establishing a one-to-one correspondence between the lower boundary of the microscopic field and the
(p − 1)-dimensional torus. In line with this simplification, we will use ξ(i) and η(i) to denote what are, in
fact, ξ(i, 1) and η(i, 1). This is a deliberate choice to streamline the expressions without compromising
the accuracy of the mathematical representations involved. Similarly, on the upper microscopic boundary
Γup

N , we may write η(i) to represent η(i, N − 1), provided this does not lead to any ambiguity.
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• Diffusion in the field. Within ΛN , the field-particles follow a symmetric simple
exclusion process and jump at exponential times. The dynamics of this process is as
follows: a particle located at site awaits an exponential time after which it jumps to a
neighboring site with speeded rate N2d, for some fixed d > 0. However, if the site is
already occupied, the jump is prevented in accordance with the exclusion rule.

• Diffusion on the road. Similarly, the road-particles follow a symmetric simple ex-
clusion process on Tp−1

N : a particle positioned at site i awaits an exponential time after
which it jumps to a neighboring site k with speeded rate N2D, for some fixed D > 0.
However, if the site k is already occupied, the jump is inhibited.

• Reservoir at the upper field’s boundary. The dynamics defined on the upper bound-
ary Γup

N act as reservoirs for the field-particles that are much slower compared to the rate
of jumps in the bulk. Fix a constant 0 < b < 1, for each site ∈ Γup

N , the following events
occur, according to exponential times that are independent of all others:

In the absence of a particle, a new one is generated with rate b.

Conversely, if a particle is present, it is eliminated with rate 1 − b.

•• Exchange dynamics between the lower field’s boundary and the road. We now
describe the interacting behavior between the road-particles and the field-particles at the
lower boundary of the microscopic field Γlow

N . Fix α > 0, for each site = (i, 1) ∈ Γlow
N ,

according to exponential times, the following scenarios may occur:
If a road-particle is present and no field-particle exists, then a field-particle is gen-
erated at site with speeded rate Nα . Independently, the road-particle is
eliminated with rate α .

Conversely, if a field-particle is present without a road-particle, then the field-
particle is eliminated with speeded rate Nα . Independently, a road-particle
is generated with rate α .

The configuration space is given by
SN := {0, 1}ΛN︸ ︷︷ ︸

=: Sfield
N

× {0, 1}Γlow
N︸ ︷︷ ︸

=: Sroad
N

which we endow with the product topology. The elements of SN , referred to as config-
urations, are denoted by (η, ξ). The first marginal η represents a configuration within
the state space Sfield

N . To be more specific, in a given configuration η, for any in ΛN ,
η( ) = 1 means the site is occupied. Conversely, η( ) = 0 signifies that the site is
empty. Similarly, the second marginal ξ stands for a configuration within the state space
Sroad

N , and for any i in Γlow
N , the value ξ(i) indicates the occupancy status of particle at

site i in a given configuration ξ.
For any configuration η in Sfield

N (resp. ξ in Sroad
N ), and any sites , in ΛN (resp. i, k

in Γlow
N ), let η , (resp. ξi,k) be the configuration obtained from η (resp. ξ) by switching

the values at and (resp. i and k), namely

(η , )( ) =


η( ) if = ,

η( ) if = ,

η( ) otherwise,

resp. (ξi,k)(m) =


ξ(i) if m = k,

ξ(k) if m = i,

ξ(m) otherwise

 .
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For the sites ∈ ΓN (resp. i ∈ Γlow
N ), let η (resp. ξi) be the configuration obtained from

η (resp. ξ) by flipping the occupation number at site (resp. i), namely

(η )( ) =
1 − η( ) if = ,

η( ) otherwise,

resp. (ξi)(m) =
1 − ξ(m) if (m) = i,

ξ(m) otherwise

 .

Figure I — The microscopic dynamics in dimension p = 2. In the field, particles are
represented by green dots and jump towards one of their adjacent sites at exponential times
with mean frequency N2d — “with rate N2d” for short. Moves to already occupied sites are
prohibited by the exclusion rule, and are indicated by the symbol . Similarly, particles on
the road are depicted by the blue dots and jump to their neighboring unoccupied sites with
rate N2D. At the upper boundary of the field Γup

N , particle emerge in empty sites with rate b

and are removed with rate 1 − b. The interactions at the lower boundary of the field Γlow
N allow

the coupling between the field and the road and play a central role in the model. These are
detailed in the “Exchange dynamics” panel on the right-hand-side of the figure. For clarity and
to facilitate understanding, Γlow

N is represented twice to distinguish between the particles at the
lower boundary of the field and those on the road. Notice also that not all possible jumps are
represented.

Fix α, d,D ∈ (0,∞), and 0 < b < 1. The generator of the microscopic dynamics,
LN : RSN → RSN , is split as follows:

LN = N2 Lfield
N︸ ︷︷ ︸

field diffusion

+
road diffusion︷ ︸︸ ︷
N2 Lroad

N + N LRob
N︸ ︷︷ ︸

lower Robin
condition

+

road
reaction︷︸︸︷
Lreac

N + Lup
N︸︷︷︸

upper
reservoir

, (2.1)
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where, for any f : SN → R and any (η, ξ) ∈ SN ,
(
Lfield

N f
)

(η, ξ) = d

2
∑

, ∈ΛN

| − |=1

[
f(η , , ξ) − f(η, ξ)

]
, (2.2)

(
Lroad

N f
)

(η, ξ) = D

2
∑

i,k∈Γlow
N

|i−k|=1

[
f(η, ξi,k) − f(η, ξ)

]
, (2.3)

(
LRob

N f
)

(η, ξ) = α
∑

i∈Γlow
N

(
η(i) − ξ(i)

)2 [
f(ηi, ξ) − f(η, ξ)

]
, (2.4)

(Lreac
N f) (η, ξ) = α

∑
i∈Γlow

N

(
η(i) − ξ(i)

)2 [
f(η, ξi) − f(η, ξ)

]
, (2.5)

(Lup
Nf) (η, ξ) =

∑
i∈Γup

N

(
b(1 − η(i)) + (1 − b)η(i)

) [
f(ηi, ξ) − f(η, ξ)

]
. (2.6)

In (2.2) and (2.3), we use | | to denote the infinity norm in Rp, that is

∀ ∈ ΛN , | | = max(|i1|, · · · , |ip−1|, |j|).

Also, we highlight that the flip rate α(η(i) − ξ(i))2 in (2.4) and (2.5) arises from equality

(1 − η(i)) ξ(i) + η(i) (1 − ξ(i)) = (η(i) − ξ(i))2,

which holds since both η(i) and ξ(i) belong to {0, 1}.
The parts (2.2), (2.3) and (2.6) are rather classical, see [34], [4], [42] for instance.

On the other hand, the parts (2.4) and (2.5) are original, their role being to catch the
exchange condition in the field-road model. We refer to [28] and [30] for related issues.

For a given time horizon T > 0, we denote (ηt, ξt)t∈[0,T ] the Markov process with state
space SN associated to the generator LN . We define D([0, T ] ;SN) as the path space for
càdlàg time trajectories valued in SN . Given a measure µN on SN , we denote by PµN

N the
probability measure on D([0, T ] ;SN) induced by µN and (ηt, ξt)t∈[0,T ], and we write EµN

N

the expectation with respect to PµN

N . Moreover, the notation ⟨ , ⟩µN
refers to the scalar

product on L2
µN

(SN).

2.3 Functional spaces and macroscopic equations

For any integers n and m, we define the functional spaces

Cn,m([0, T ] × Λ) and Cn,m([0, T ] × Tp−1)

which respectively consist of functions

G = G(t, ) : [0, T ] × Λ → R and H = H(t, x) : [0, T ] × Tp−1 → R,

that possess n continuous derivatives with respect to the time variable on [0, T ], and m
continuous derivatives with respect to the spatial variable on Λ and Tp−1 respectively. We
also introduce the subset Cn,m

c ([0, T ] × Λ) of functions with compact support in [0, T ] × Λ
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within Cn,m([0, T ] × Λ). Similarly, we denote Cm(Λ) and Cm(Tp−1) the sets of functions
with m continuous derivatives on Λ and Tp−1 respectively.

In the whole document, if φ is a function that depends both on the time and the
spatial variables, the abbreviation φ(t) naturally stands for φ(t, ).

In the sequel, the notations ⟨ , ⟩Λ and ⟨ , ⟩Tp−1 respectively represent the L2(Λ) and
L2(Tp−1) inner products.

We consider the Sobolev space H1(Λ) as the set of functions g in L2(Λ) such that for
every q ranging from 1 to p, there is an element ∂eqg in L2(Λ), for which we have

∀G ∈ C∞
c (Λ), ⟨∂eqG, g⟩Λ = −⟨G, ∂eqg⟩Λ,

where ∂eqφ denotes the derivative with respect to the qth canonical vector of Rp. We then
define the norms on the Sobolev space H1(Λ) by

∥g∥H1(Λ):=
(

∥g∥2
L2(Λ) +

p∑
q=1

∥∂eqg∥2
L2(Λ)

)1/2

.

With respect to a given Banach space B (most of the time, B = H1(Λ) or B =
L2(Tp−1)), we define L2(0, T ;B) as the function space composed of maps φ : [0, T ] → B
satisfying ∫ T

0
∥φ(t)∥2

B dt < +∞.

In order to define the value of an element g in H1(Λ) at the boundaries Γ = Γup ∪Γlow,
we need to introduce the notion of trace. The trace operator on the space H1(Λ) can be
defined as the bounded linear operator

Tr : H1(Λ) → L2(Γ)

such that Tr extends the classical trace, that is

∀g ∈ H1(Λ) ∩ C0(Λ), Tr(g) = g|Γ.

We refer to [24, Part II, Section 5] for a detailed survey of the trace operator. In the sequel,
for any point = (x, y) in Γ and any function g belonging to the space L2(0, T ;H1(Λ)),
all the expressions g(t, ), g(t, x) or g(t, )|Γ(x) represent the trace operator applied to
g(t, ) at position ∈ Γ. Additionally, observe that ∂yg(t, ) (resp. −∂yg(t, )) stands for
the outer normal derivative of the function g(t, ) on the boundary Γup (resp. Γlow).

We are now in a position to introduce our notion of weak solution for the field-road
problem (1.2)-(1.3).

Definition 2.1 (Solving the field-road system) Fix a time horizon T > 0. For any
measurable initial data v0 : Λ → [0, 1] and u0 : Tp−1 → [0, 1], a couple of functions (v, u)
is said to be a weak solution to the initial value problem (1.2)-(1.3) as soon as the following
two conditions (W1)-(W2) hold true:

(W1) v ∈ L2(0, T ;H1(Λ)) and u ∈ L2(0, T ;L2(Tp−1)).
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(W2) For any G ∈ C1,2([0, T ] × Λ), any H ∈ C1,2([0, T ] × Tp−1), there holds

⟨v(T ), G(T )⟩Λ − ⟨v0, G(0)⟩Λ =
∫ T

0
⟨v(s), ∂sG(s)⟩Λ ds+

∫ T

0
⟨v(s), d∆G(s)⟩Λ ds

−
∫ T

0
⟨v|y=1(s), d∂yG|y=1(s)⟩Tp−1 ds+

∫ T

0
⟨v|y=0(s), d∂yG|y=0(s)⟩Tp−1 ds

+
∫ T

0
α ⟨u(s) − v|y=0(s), G|y=0(s)⟩Tp−1 ds,

(2.7)

together with

⟨u(T ), H(T )⟩Tp−1 − ⟨u0, H(0)⟩Tp−1 =
∫ T

0
⟨u(s), ∂sH(s)⟩Tp−1 +

∫ T

0
⟨u(s), D∆xH(s)⟩Tp−1 ds

+
∫ T

0
α ⟨v|y=0(s) − u(s), H(s)⟩Tp−1 ds.

(2.8)

2.4 Main Results

We use the notations Mfield and Mroad to denote the sets of positive Radon measures
on Λ and Γlow whose total mass is bounded by 1, and we define the space M as the
Cartesian product Mfield × Mroad. We denote the integrals of functions against measures
indifferently for Λ or Γlow, namely, for any measures µ ∈ Mfield and ν ∈ Mroad, and any
functions G ∈ L1

µ(Λ) and H ∈ L1
µ(Tp−1) by

⟨µ,G⟩ =
∫

Λ
G( )µ(d ) and ⟨µ,H⟩ =

∫
Tp−1

H(x) ν(dx).

We endow M, Mfield and Mroad with a topology induced by the weak convergence of
measures. It is worth mentioning that all these spaces are compact and Polish.

The empirical measure of a configuration (η, ξ) ∈ SN is defined as πN(η, ξ), where the
map πN : SN → M is given by

πN(η, ξ) :=
 1
Np

∑
∈ΛN

η( )δ /N︸ ︷︷ ︸
=: πfield

N (η)

,
1

Np−1

∑
i∈Γlow

N

ξ(i)δi/N

︸ ︷︷ ︸
=: πroad

N (ξ)

. (2.9)

In (2.9), the notation δ /N (resp. δi/N) stands for the Dirac mass at /N (resp. i/N). For
any configuration (η, ξ) ∈ SN , any G ∈ C0(Λ) and any H ∈ C0(Tp−1), we denote

⟨πN(η, ξ), [G,H]⟩ := ⟨πfield
N (η), G⟩ + ⟨πroad

N (ξ), H⟩.

We introduce (πN(t))t∈[0,T ] := (πN(ηt, ξt))t∈[0,T ], the Markov process on the state space
M induced from (ηt, ξt)t∈[0,T ]. The trajectories of this process occupy D([0, T ] ;M), the
designated path space for càdlàg time trajectories valued in M. We endow D([0, T ] ;M)
with the Skorokhod topology. For further details regarding this topology, we refer the
reader to [14], which provides an extensive survey on this subject. For G ∈ C0,0([0, T ]×Λ),
H ∈ C0,0([0, T ] × Tp−1), and t ∈ [0, T ], we denote

⟨πN(t), [G(t), H(t)]⟩ := ⟨πfield
N (t), G(t)⟩ + ⟨πroad

N (t), H(t)⟩,
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where πfield
N (t) := πfield

N (ηt) and πroad
N (t) := πroad

N (ξt).
Given an initial probability measure µN on SN , we define, for N ≥ 2, the probability

measure QµN

N := PµN

N (π−1
N ) on the set of measures M, as the law of the Markov process

(πN(t))t∈[0,T ] = (πN(ηt, ξt))t∈[0,T ].

Essentially, QµN

N allows to provide a description through measures on the macroscopic
space of the state distribution of the process (ηt, ξt)t∈[0,T ] when initiated from the measure
µN .
Definition 2.2 (Sequence of measures associated with the initial data) Let

v0 : Λ → [0, 1] and u0 : Tp−1 → [0, 1]
be two measurable functions. We say that a sequence of probability measures

(µN)N≥2 = (µfield
N , µroad

N )N≥2

on SN = Sfield
N × Sroad

N is associated with (v0, u0) if

lim
N→∞

µfield
N

[
η ∈ Sfield

N :
∣∣∣∣⟨πfield

N (η), G⟩ − ⟨v0, G⟩Λ

∣∣∣∣ ≥ δ

]
= 0, (2.10)

and
lim

N→∞
µroad

N

[
ξ ∈ Sroad

N :
∣∣∣∣⟨πroad

N (ξ), H⟩ − ⟨u0, H⟩Γlow

∣∣∣∣ ≥ δ

]
= 0, (2.11)

for any δ > 0, any G ∈ C0(Λ) and H ∈ C0(Tp−1).
Remark 2.3 Observe in Definition 2.2 that we ask v0 and u0 to be valued in [0, 1]. This
condition cannot be relaxed because of the exclusion rule, that enforces the sites to host at
most one particle. To be convinced with this, consider the case u0 ≡ 2, and take H ≡ 1.
We then have ⟨u0, H⟩Γlow = 2, and

⟨πroad
N (ξ), H⟩ = 1

Np−1

∑
i∈Γlow

N

ξ(i) ≤ 1
Np−1

∑
i∈Γlow

N

1 = 1,

so that no configuration allows the limit (2.11) to hold, and the data u0 ≡ 2 is unreachable.
Here is the main contribution of the present work.

Theorem 2.4 (Hydrodynamic limit) Fix a time horizon T > 0. Let v0 : Λ → [0, 1]
and u0 : Tp−1 → [0, 1] be two measurable functions, and (µN)N≥2 a sequence of initial
probability measures on SN associated with (v0, u0) in the sense of Definition 2.2. Then
the sequence of probability measures (QµN

N )N≥2 converges weakly towards some Q∞ which
is concentrated on the path(

πfield(t, dx dy), πroad(t, dx)
)

t∈[0,T ]
=
(
v(t, x, y)dx dy, u(t, x)dx

)
t∈[0,T ]

,

where (v, u) is the unique weak solution to the Cauchy problem (1.2)-(1.3) in the sense of
Definition 2.1. In particular, for any t ∈ [0, T ], any δ > 0, and any test function

G ∈ C1,2([0, T ] × Λ) and H ∈ C1,2([0, T ] × Γlow),
we have

lim
N→∞

PµN

N

[
ηt ∈ Sfield

N :
∣∣∣⟨πfield

N (t), G(t)⟩ − ⟨v(t), G(t)⟩Λ

∣∣∣ > δ
]

= 0,

and
lim

N→∞
PµN

N

[
ξt ∈ Sroad

N :
∣∣∣⟨πroad

N (t), H(t)⟩ − ⟨u(t), H(t)⟩Γlow

∣∣∣ > δ
]

= 0.
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2.5 The steps to prove Theorem 2.4 and organisation of the paper

The proof of the hydrodynamic limit, as outlined in Theorem 2.4, is inspired by works
such as those by Kipnis and Landim [34] or Baldasso et al. [4], and unfolds in three dis-
tinct steps. The first one is to prove the tightness of the probability measures (QµN

N )N≥2
within the Skorokhod topology. This point, established in Section 3, is crucial to ensure
the existence of accumulation points for this sequence. Following this, we characterize in
Section 4 the limit points Q∞ of the sequence (QµN

N )N≥2. Specifically, it is demonstrated
that every Q∞ is concentrated on set of measure trajectories that are absolutely contin-
uous with respect to the Lebesgue measure at every moment (subsection 4.1), and that
the corresponding densities satisfy conditions (W1)-(W2) (subsections 4.2 and 4.4) that
characterize our notion of solution. This proves that the density of the measures loaded
by Q∞ are weak solutions to the Cauchy problem (1.2)-(1.3). The third and final step,
performed in Section 5, consists in showing — thanks to very adequate test functions —
that the Cauchy problem (1.2)-(1.3) admits a unique solution.

3 Martingales and tightness

3.1 Martingales

We now proceed to explain the martingales associated to our system. Fix a couple of
functions (G,H) with G ∈ C1,2([0, T ] × Λ) and H ∈ C1,2([0, T ] × Γlow), and consider the
martingale MN = MN,G,H with respect to the natural filtration σ((ηs, ξs)0≤s≤t) given for
any t ∈ [0, T ] by

MN(t) := ⟨πN(t), [G(t), H(t)]⟩ − ⟨πN(0), [G(0), H(0)]⟩ −
∫ t

0
(∂s + LN) (⟨πN(s), [G(s), H(s)]⟩) ds. (3.1)

Although the family of martingales associated to a Markov process considered in [34,
Appendix 1, Section 5] is stated for functions in C2,2, we use functions G ∈ C1,2([0, T ]×Λ)
and H ∈ C1,2([0, T ] × Γlow). This is justified because the martingale formulation (3.1), on
the bounded interval [0, T ], only requires the first partial derivative with respect to time of
G and H, and the use of C1,2 functions is sufficient to prove that MN,G,H is a martingale.
Indeed, it suffices to follow the proof of [34, Appendix 1, Section 5, Lemma 5.1], and note
that the only step where the second partial derivative with respect to time is needed is
to estimate the first term in formula (5.2) of [34] but, in our case, the uniform (since on
compacts) continuity of the first partial derivative with respect to time is enough.

Expanding the empirical measure πN with (2.9) in (3.1), we see that MN can be split
into M field

N,G + M road
N,H where

M field
N,G(t) = ⟨πfield

N (t), G(t)⟩ − ⟨πfield
N (0), G(0)⟩ −

∫ t

0
[∂s + LN ]

[
⟨πfield

N (s), G(s)⟩
]
ds,

M road
N,H(t) = ⟨πroad

N (t), H(t)⟩ − ⟨πroad
N (0), H(0)⟩ −

∫ t

0
[∂s + LN ]

[
⟨πroad

N (s), H(s)⟩
]
ds.

(3.2)

The quadratic variation of MN is given by the martingale NN = NN,G,H defined for any
t ∈ [0, T ] as

Formules des

martingales

quadratiques

NN(t) := [MN(t)]2 −
∫ t

0
BN(s)ds, (3.3)
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where

BN(s) := LN

[
⟨πN(s), [G(s), H(s)]⟩2

]
− 2 ⟨πN(s), [G(s), H(s)]⟩ ×LN [⟨πN(s), [G(s), H(s)]⟩] . (3.4)

A proof that MN and NN are martingales with respect to the natural filtration is classical
and follows the very same lines as [34, Appendix 1, Section 5].

In the integral terms of M field
N,G and M road

N,H in (3.2) we expand the expressions of πfield
N ,

πroad
N (2.9), and LN (2.1), and use at some point two discrete summations by parts. After

some tedious but straightforward computations — using facts such as (η(i) − ξ(i))2(1 −
2η(i)) = ξ(i) − η(i) or (b(1 − η(i)) + (1 − b)η(i)) (1 − 2η(i)) = b− η(i) — we get

M field
N,G(t) = ⟨πfield

N (t), G(t)⟩ − ⟨πfield
N (0), G(0)⟩ −

∫ t

0
⟨πfield

N (s), ∂sG(s)⟩ds

− 1
Np

∫ t

0

∑
∈ΛN

d∆N
xG(s,

N
)×ηs( )ds− 1

Np

∫ t

0

∑
∈ΛN \ΓN

d∂N
yyG(s,

N
)×ηs( )ds

+ 1
Np−1

∫ t

0

∑
i∈Γup

N

d∂N
y G(s, i

N
)×ηs(i)ds− 1

Np−1

∫ t

0

∑
i∈Γlow

N

d∂N
y G(s, i

N
)×ηs(i)ds

− α

Np−1

∫ t

0

∑
i∈Γlow

N

G(s, i
N

)× (ξs(i) − ηs(i))ds− 1
Np

∫ t

0

∑
i∈Γup

N

G(s, i
N

)× (b− ηs(i))ds,

(3.5)

and

M road
N,H(t) = ⟨πroad

N (t), H(t)⟩ − ⟨πroad
N (0), H(0)⟩ −

∫ t

0
⟨πroad

N (s), ∂sH(s)⟩ds

− 1
Np−1

∫ t

0

∑
i∈Γlow

N

D∆N
xH(s, i

N
)×ξs(i)ds− α

Np−1

∫ t

0

∑
i∈Γlow

N

H(s, i
N

)× (ηs(i) − ξs(i))ds.
(3.6)

In (3.5) and (3.6), the discrete Laplacians ∆N
x and ∂N

yy are defined by (time dependency
is locally drop for the sake of clarity)

Dérivées

discrètes ∀i ∈ Tp−1
N , ∆N

xH( i
N

) := N2
p−1∑
q=1

[
H( i+ẽq

N
) − 2H( i

N
) +H( i−ẽq

N
)
]
,

∀(i, j) ∈ ΛN , ∆N
xG( i

N
, j

N
) := N2

p−1∑
q=1

[
G( i+ẽq

N
, j

N
) − 2G( i

N
, j

N
) +G( i−ẽq

N
, j

N
)
]
,

∀(i, j) ∈ ΛN \ΓN , ∂N
yyG( i

N
, j

N
) := N2

[
G( i

N
, j+1

N
) − 2G( i

N
, j

N
) +G( i

N
, j−1

N
)
]
,

(3.7)

where (ẽq)1≤q≤p−1 denotes the canonical basis of Rp−1, and the discrete derivative ∂N
y at

the boundary of the microscopic field by (time dependency is locally drop for the sake of
clarity)

∂N
y G( i

N
, j

N
) :=


N
[
G( i

N
, j+1

N
) −G( i

N
, j

N
)
]

if j = 1,

N
[
G( i

N
, j

N
) −G( i

N
, j−1

N
)
]

if j = N − 1.
(3.8)

Similarly, we also develop BN from (3.4) with the expression of LN in (2.1). The
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computations show that BN can be split into Bfield
N,G + Broad

N,H with

Bfield
N,G(s) = d/2

N2p

∑
, ∈ΛN

| − |=1

[
ηs( ) − ηs( )

]2
×
[
N(G(s,

N
) −G(s,

N
))
]2

+ α

N2p−1

∑
i∈Γlow

N

[
ηs(i) − ξs(i)

]2
×
[
G(s, i

N
)
]2

+ 1
N2p

∑
i∈Γup

N

[
b(1 − ηs(i)) + (1 − b)ηs(i)

]
×
[
G(s, i

N
)
]2

(3.9)

and

Broad
N,H(s) = D/2

N2(p−1)

∑
i,k∈Γlow

N
|i−k|=1

[
ξs(i) − ξs(k)

]2
×
[
N(H(s, i

N
) −H(s, k

N
))
]2

+ α

N2(p−1)

∑
i∈Γlow

N

[
ηs(i) − ξs(i)

]2
×
[
H(s, i

N
)
]2
.

(3.10)

3.2 Tightness

We are now in position to prove the tightness of (QµN

N )N≥2.

Proposition 3.1 (Tightness) For any sequence of initial measures (µN)N≥2 on SN , the
sequence (QµN

N )N≥2 is tight in the Skorokhod topology of D([0, T ] ;M).

Proof of Proposition 3.1. In accordance with the method presented in [34, Chapter
4, Section 1], it is enough to verify the following two statements G ∈ C2(Λ) and any
H ∈ C2(Γlow):

(T1) For all t ∈ [0, T ] and all ε > 0, there is M > 0 such that

sup
N≥2

{
QµN

N

(∣∣∣⟨πN(t), [G,H]⟩
∣∣∣ ≥ M

)}
≤ ε. (3.11)

(T2) For all ε > 0, we have

lim
δ→0+

lim sup
N→∞

{
QµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣⟨πN(t), [G,H]⟩ − ⟨πN(s), [G,H]⟩
∣∣∣ ≥ ε

)}
= 0. (3.12)

Note that, within this proof, we require the test functions G and H to depend solely on
the spatial variable.

• Proof of (T1). Since the empirical measures πfield
N and πroad

N are both bounded by 1, we
almost surely have∣∣∣⟨πfield

N (t), G⟩
∣∣∣ ≤ ∥G∥L∞(Λ) and

∣∣∣⟨πroad
N (t), H⟩

∣∣∣ ≤ ∥H∥L∞(Γlow).
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As a result, (3.11) is achieved with M = ε−1(∥G∥L∞(Λ) + ∥H∥L∞(Γlow)).

• Proof of (T2). By expanding the terms ⟨πN(t), [G,H]⟩ and ⟨πN(s), [G,H]⟩ with those
of the Dynkin’s formula in (3.1) and using the Markov and the triangular inequalities, we
can see that (3.12) holds if, for any ε > 0, we prove the following limits:

lim
δ→0+

lim sup
N→∞

{
PµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣MN(t) − MN(s)
∣∣∣ > ε

)}
= 0, (3.13)

lim
δ→0+

lim sup
N→∞

{
PµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣∣ ∫ t

s
LN

[
⟨πfield

N (r), G⟩
]
dr
∣∣∣∣ > ε

)}
= 0, (3.14)

lim
δ→0+

lim sup
N→∞

{
PµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣∣ ∫ t

s
LN

[
⟨πroad

N (r), H⟩
]
dr

∣∣∣∣ > ε
)}

= 0. (3.15)

We start to show (3.13). From Doob’s inequality, for any ε > 0,

PµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣MN(t) − MN(s)
∣∣∣ > ε

)
≤ PµN

N

(
sup

0≤t≤T

∣∣∣MN(t)
∣∣∣ > ε/2

)

≤ 4
ε2E

µN

N

([
MN(T )

]2)
(3.3)= 4

ε2E
µN

N

(
NN(T ) +

∫ T

0
BN(s)ds

)

= 4
ε2E

µN

N

(∫ T

0
BN(s)ds

)
,

(3.16)

where the second line arises from the martingale property. Now observe from (3.9) and
(3.10) that, for any s ∈ [0, T ],

|Bfield
N,G(s)| ≤ d/2

N2p
∥∇G∥2

L∞(Λ)

( ∑
, ∈ΛN

| − |=1

1
)

+ α

N2p−1 ∥G∥2
L∞(Λ)

( ∑
i∈Γlow

N

1
)

+ 1
N2p

∥G∥2
L∞(Λ)

( ∑
i∈Γlow

N

1
)

and

|Broad
N,H(s)| ≤ D/2

N2(p−1) ∥∇xH∥2
L∞(Tp−1)

( ∑
i,k∈Γlow

N
|i−k|=1

1
)

+ α

N2(p−1) ∥H∥2
L∞(Tp−1)

( ∑
i∈Γlow

N

1
)
.

As a result, we have |Bfield
N,G(s)| = O(1/Np) and |Broad

N,H(s)| = O(1/Np−1), and then
|BN(s)| = O(1/Np−1). Combining those upper bounds with (3.16), the proof of the
limit (3.13) is then completed.

We move now on the proofs of (3.14) and (3.15). By similar computations as those
used to develop M field

N,G and M road
N,H in (3.5) and (3.6), we express the terms under the

integrals in (3.14) and (3.15):

LN

[
⟨πfield

N (s), G⟩
]

= 1
Np

∑
∈ΛN

d∆N
xG(

N
)×ηs( ) + 1

Np

∑
∈ΛN \ΓN

d∂N
yyG(

N
)×ηs( )

− 1
Np−1

∑
i∈Γup

N

d∂N
y G( i

N
)×ηs(i) + 1

Np−1

∑
i∈Γlow

N

d∂N
y G( i

N
)×ηs(i)

+ α

Np−1

∑
i∈Γlow

N

G( i
N

)× (ξs(i) − ηs(i)) + 1
Np

∑
i∈Γup

N

G( i
N

)× (b− ηs(i))

(3.17)
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and
LN

[
⟨πroad

N (s), H⟩
]

= 1
Np−1

∑
i∈Γlow

N

D∆N
xH( i

N
)×ξs(i) + α

Np−1

∑
i∈Γlow

N

H( i
N

)× (ηs(i) − ξs(i)), (3.18)

where we recall that the discrete operators ∆N
x , ∂N

yy, and ∂N
y are defined in (3.7) and (3.8).

Using then some Taylor expansions to control the discrete derivatives in (3.17) and (3.18),
we reach

|LN

[
⟨πfield

N (s), G⟩
]

| ≤ d

Np

(
sup

Λ

∣∣∣∆xG
∣∣∣+O(1/N)

)( ∑
∈ΛN

1
)

+ d

Np

(
sup

Λ

∣∣∣∂yyG
∣∣∣+O(1/N)

)( ∑
∈ΛN \ΓN

1
)

+ d

Np−1

(
sup
Γup

∣∣∣∂yG
∣∣∣+O(1/N)

)( ∑
i∈Γup

N

1
)

+ d

Np−1

(
sup
Γlow

∣∣∣∂yG
∣∣∣+O(1/N)

)( ∑
i∈Γlow

N

1
)

+ α

Np−1

(
sup
Γlow

∣∣∣G∣∣∣)( ∑
i∈Γlow

N

1
)

+
(

sup
Γup

∣∣∣G∣∣∣)( ∑
i∈Γup

N

1
)

and

|LN

[
⟨πroad

N (s), H⟩
]

| ≤ D

Np−1

(
sup
Tp−1

∣∣∣∆xH
∣∣∣+O(1/N)

)( ∑
i∈Γlow

N

1
)

+ α

Np−1

(
sup
Tp−1

∣∣∣H∣∣∣)( ∑
i∈Γlow

N

1
)
.

From this, it follows that |LN [⟨πfield
N (s), G⟩] | and |LN [⟨πroad

N (s), H⟩] | remain bounded.
Therefore, for some constant C > 0, we have

PµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣∣ ∫ t

s
LN

[
⟨πfield

N (r), G⟩
]
dr > ε

∣∣∣∣) ≤ Cδ

ε
,

and
PµN

N

(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣∣ ∫ t

s
LN

[
⟨πroad

N (r), G⟩
]
dr > ε

∣∣∣∣) ≤ Cδ

ε
,

and the limits (3.14) and (3.15) are a straight consequence. Having verified both con-
ditions (T1) and (T2), we can conclude that the sequence (QµN

N )N≥2 is tight with respect
to the Skorokhod topology on D([0, T ] ;M). This completes the proof.

4 Characterization of the limit points of (QµN

N )N≥2

4.1 The limit points of (QµN

N )N≥2 load paths with density

Proposition 4.1 (Loading Lebesgue continuous measure processes) Any limit point of
the sequence (QµN

N )N≥2, referred to as Q∞, is concentrated on the set D0([0, T ] ;M) of
couple of measure processes that are, at any time, absolutely continuous with respect to
the Lebesgue measure on Λ and Tp−1 respectively. More precisely, for any Q∞ in the
closure of (QµN

N )N≥2, we have

Q∞

(
D0([0, T ] ;M)

)
= 1,

where

D0([0, T ] ;M) :=
{(

πfield(t), πroad(t)
)

t∈[0,T ]
∈ D([0, T ] ;M) such that,

for any t ∈ [0, T ],
(
πfield(t), πroad(t)

)
is absolutely

continuous with respect to the Lebesgue measure on

(Λ × Tp−1), with density (v(t, ), u(t, )) ∈ [0, 1]Λ × [0, 1]T
p−1

}
.
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Indeed, the simple exclusion rule provides the upper bounds

|⟨πfield(t), G⟩| ≤ ∥G∥L1(Λ) and |⟨πroad(t), H⟩| ≤ ∥H∥L1(Tp−1), (4.1)

for any t ∈ [0, T ], G ∈ C(Λ) and H ∈ C(Tp−1). Now, denoting λ the Lebesgue measure
on Λ, let A be a Borel set such that λ(A) = 0. From a Corollary of Lusin’s Theorem, see
[48, subsection 2.24], there is a sequence of functions (gn)n∈N such that, for any n ∈ N,
gn ∈ C0

c (Λ), |gn| ≤ 1 and limn+→∞ gn(x) = 1A(x) a.e. in Λ. We write

πfield(t)(A) = ⟨πfield(t),1A⟩ = ⟨πfield(t),1A − gn⟩+⟨πfield(t), gn⟩

≤ ⟨πfield(t),1A − gn⟩+

∫
Λ
gn(x)dλ(x),

thanks to (4.1). By the dominated convergence theorem, as n → +∞, the first term in the
right hand side tends to zero, while the second term tends to λ(A), so that πfield(t)(A) ≤
λ(A). Finally, since λ(A) = 0, we have πfield(t)(A) = 0 and πfield(t) is thus absolutely
continuous with respect to the Lebesgue measure. The same applies for πroad(t).

4.2 The limit points of (QµN

N )N≥2 load paths whose densities satisfy (W1)

The next step consists in showing that the limit trajectories own the regularity claimed
in (W1). Let us define the set SW1 by

SW1 :=
{(
πfield(t), πroad(t)

)
t∈[0,T ]

=
(
v(t, )d , u(t, x)dx

)
t∈[0,T ]

∣∣∣∣ (v, u) satisfies condition (W1)
}
.

Then we have the following proposition.

Proposition 4.2 (Identification of the limit sets) Let Q∞ be a limit point of the sequence
(QµN

N )N≥2. Then,
Q∞(SW1) = 1. (4.2)

The function u(t, ) being in L2(Tp−1) directly follows from the simple exclusion rule
which forces u to be positive and bounded by 1. On the other hand, v(t, ) being in
H1(Λ) comes from the Riesz representation theorem combined with the following energy
estimate.

Lemma 4.3 (Energy estimate) Given v ∈ L2(0, T ;L2(Λ)) and 1 ≤ q ≤ p, consider the
(potentially infinite) quantity

Eq(v) := sup
G∈C0,2

c ([0,T ]×Λ)

{∫ T

0

〈
v(s), ∂eqG(s)

〉
Λ
ds− 1

2

∫ T

0
∥G(s)∥2

L2(Λ) ds

}
. (4.3)

Then, for any q ∈ J1; pK,

Q∞

((
πfield(t), πroad(t)

)
t∈[0,T ]

=
(
v(t, )d , u(t, x)dx

)
t∈[0,T ]

∣∣∣∣ Eq(v) < +∞
)

= 1.

A proof of Lemma 4.3 is given in Appendix A.3.



18 Matthieu Alfaro, Mustapha Mourragui, and Samuel Tréton

4.3 Replacement lemmas

Before obtaining the limit equations satisfied by the densities loaded by the limit points of
(QµN

N )N≥2, we need to state two Replacement lemmas to correctly ensure the convergence
of the boundary terms of the martingale MN towards those of the weak formulation in
(W2) — see subsection 4.4 for details. The essence of these lemmas lies in comparing the
occupancy status of η at the boundary sites to the average number of particles in their
immediate vicinity. To state such a result, we must define these “substitute objects”. For
fixed ∈ ΓN and ε > 0, let

ΛεN :=
{

∈ ΛN : | − | ≤ εN
}

= ΛN ∩
{

+ [−εN, εN ]p
}
, (4.4)

and define for η ∈ Sfield
N the average number of particle of η inside the box ΛεN , that is

ηεN( ) := cN,ε

∑
∈ΛεN

η( ), (4.5)

where cN,ε is the number of sites inside ΛεN , namely,

cN,ε := 1
|ΛεN |

=
[(

2⌊εN⌋ + 1
)p−1

×
(
⌊εN⌋ + 1

)]−1
. (4.6)

Let us note that this applies specifically to boundary points ∈ ΓN , where the size of ΛεN

is correctly captured by (4.6). The condition = (i, j) with j ∈ {1, N−1} is assumed here
because we apply replacement lemmas exclusively at the boundary, making the averaging
process relevant only for these points. For interior points, the formula would differ, as the
structure of the neighborhood would change.

The upper Replacement lemma is the following.

Lemma 4.4 (Replacement at the upper boundary) Let (µN)N≥2 be a sequence of initial
measures on SN . For any test function G ∈ C1,2([0, T ] × Λ), we have

lim sup
ε→0+

lim sup
N→∞

EµN

N

∣∣∣∣∣
∫ T

0

1
Np−1

∑
∈Γup

N

G(s,
N

)
[
ηεN

s ( ) − ηs( )
]
ds

∣∣∣∣∣
 = 0. (4.7)

Similarly, the lower Replacement lemma is the following.

Lemma 4.5 (Replacement at the lower boundary) Let (µN)N≥2 be a sequence of initial
measures on SN . For any test function G ∈ C1,2([0, T ] × Λ), we have

lim sup
ε→0+

lim sup
N→∞

EµN

N

∣∣∣∣∣
∫ T

0

1
Np−1

∑
∈Γlow

N

G(s,
N

)
[
ηεN

s ( ) − ηs( )
]
ds

∣∣∣∣∣
 = 0. (4.8)

The proof of the Lemma 4.4 is given in Appendix A.2, while that of Lemma 4.5 is
omitted since it follows essentially identical arguments.
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Figure II — The upper Replacement lemma. For = (i, j) ∈ Γup
N , we define ΛεN as

the intersection between ΛN and the p-dimensional box of range 2εN centered on . Notice
that for fixed ε > 0, the size of the box remains constant at the macroscopic scale. Lemma 4.4
establishes that, as N → ∞ followed by ε → 0+, the value of η( ) can be replaced by ηεN ( )
which is the mean value of η inside ΛεN .

4.4 The limit points of (QµN

N )N≥2 load paths whose densities satisfy (W2)

We claim now that all the limit trajectories are supported on the set SW2 of measures
with density (v, u) that satisfy the weak formulation associated with (1.2)-(1.3), namely

SW2 :=
{(
πfield(t), πroad(t)

)
t∈[0,T ]

=
(
v(t, )d , u(t, x)dx

)
t∈[0,T ]

∣∣∣∣ (v, u) satisfies condition (W2)
}
.

Proposition 4.6 (Identification of the limit equations) Let Q∞ be a limit point of the
sequence (QµN

N )N≥2. Then,

Q∞(SW2) = 1. (4.9)

To establish Proposition 4.6, we need to demonstrate that each component of the
martingale MN = M field

N,G + M road
N,H , as detailed in (3.5)-(3.6), converges towards its respec-

tive counterpart in the weak formulation (2.7)-(2.8), and then that the martingale itself
vanishes as N → ∞. This requires the two Replacement lemmas (Lemma 4.4 and Lemma
4.5), which allow the substitution of terms not expressed through the empirical measure
πN in the martingale MN , and the identification of the limit sets (Proposition 4.2), that
is essential to define the trace of the function v(t, ) at the lower and upper boundaries.

Proof of Proposition 4.6. Let G ∈ C1,2([0, T ] × Λ) and H ∈ C1,2([0, T ] × Tp−1). For
practical reasons, let us define here the functional Wu,v,(G,H)(T ) := W field

u,v,G(T ) + W road
u,v,H(T )
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associated with the weak formulation (2.7)-(2.8) in (W2):

W field
u,v,G(T ) := ⟨v(T ), G(T )⟩Λ − ⟨v0, G(0)⟩Λ −

∫ T

0
⟨v(s), ∂sG(s)⟩Λ ds−

∫ T

0
⟨v(s), d∆G(s)⟩Λ ds

+
∫ T

0
⟨v|y=1(s), d∂yG|y=1(s)⟩Tp−1 ds−

∫ T

0
⟨v|y=0(s), d∂yG|y=0(s)⟩Tp−1 ds

−
∫ T

0
α ⟨u(s) − v|y=0(s), G|y=0(s)⟩Tp−1 ds,

(4.10)

and

W road
u,v,H(T ) := ⟨u(T ), H(T )⟩Tp−1 − ⟨u0, H(0)⟩Tp−1 −

∫ T

0
⟨u(s), ∂sH(s)⟩Tp−1 ds

−
∫ T

0
⟨u(s), D∆xH(s)⟩Tp−1 ds−

∫ T

0
α ⟨v|y=0(s) − u(s), H(s)⟩Tp−1 ds.

(4.11)

Given Q∞ in the closure of the sequence (QµN

N )N≥2, the statement of Proposition 4.6 can
then be reformulated as

Q∞

((
πfield(t), πroad(t)

)
t∈[0,T ]

∣∣∣∣ πfield(t) = v(t, )d , πroad(t) = u(t, x)dx and

∀(G,H) ∈ C1,2([0, T ] × Λ) × C1,2([0, T ] × Tp−1),W field
u,v,G(T ) = W road

u,v,H(T ) = 0
)

= 1.

To prove this, it is sufficient to establish that, for any δ > 0, any (G,H) ∈ C1,2([0, T ] ×
Λ) × C1,2([0, T ] × Tp−1),

Q∞

(∣∣∣Wu,v,(G,H)(T )
∣∣∣ > δ

)
= 0. (4.12)

Indeed, assume (4.12) holds. By separability, there is a sequence (Gn, Hn)n∈N which is
dense in C1,2([0, T ] × Λ) × C1,2([0, T ] × Tp−1). Then, for any K ∈ N, we have

Q∞

(
sup

0≤n≤K

∣∣∣Wu,v,(Gn,Hn)(T )
∣∣∣ > δ

)
≤

K∑
n=0

Q∞

(∣∣∣Wu,v,(Gn,Hn)(T )
∣∣∣ > δ

)
= 0,

and conclude by monotone convergence Theorem.
We now turn to the proof of (4.12). At this point, to work with the probability

measures QµN

N (that do not load paths with densities) instead of Q∞, we need to substitute
the quantity Wu,v,(G,H)(T ) with another one which only depends on measures πfield and πroad

instead of v and u. This substitution cannot be made directly because of the boundary
terms in (4.10) and (4.11). To overcome this issue, let us introduce the two families of
unit approximations indexed by ε > 0,

Uup
ε := 1

ε(2ε)p−11[−ε,ε]p−1×[0,ε] and Ulow
ε := 1

ε(2ε)p−11[−ε,ε]p−1×[−ε,0],

defined for all x ∈ Tp−1 and y ∈ [0, 1]. Observe that ηεN( ) defined in (4.5) can then be
rewritten for any ∈ ΓN = Γup

N ∪ Γlow
N , ε > 0 and N ≥ 2 as

ηεN( ) = c̃N,ε [πfield
N ∗ Uup

ε ]( /N), if ∈ Γup
N , (4.13)
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and
ηεN( ) = c̃N,ε [πfield

N ∗ Ulow
ε ]( /N), if ∈ Γlow

N , (4.14)
where

c̃N,ε = (2εN)p−1(εN)
(2⌊εN⌋+1)p−1(⌊εN⌋+1) for any ε > 0 and any N ≥ 2,

and the convolutions of the unit approximations Uup
ε and Ulow

ε with the Radon measure
πfield

N are well-defined functions on Λ given, for any ∈ Λ, by

[πfield
N ∗ Uup

ε ]( ) =
∫

Λ
Uup

ε ( − ) dπfield
N ( ) and [πfield

N ∗ Ulow
ε ]( ) =

∫
Λ
Ulow

ε ( − ) dπfield
N ( )

respectively. Now for ε > 0, π = (πfield, πroad) ∈ M, and t ∈ [0, T ], we let W ε
π,(G,H)(T ) :=

W field
π,G,ε(T ) + W road

π,H,ε(T ) with

W field
π,G,ε(T ) := ⟨πfield(T ), G(T )⟩ − ⟨πfield(0), G(0)⟩ −

∫ T

0
⟨πfield(s), ∂sG(s)⟩ds−

∫ T

0
⟨πfield(s), d∆G(s)⟩ds

+
∫ T

0

〈
[πfield(s) ∗ Uup

ε ]|y=1, d∂yG|y=1(s)
〉
Tp−1

ds−
∫ T

0

〈
[πfield(s) ∗ Ulow

ε ]|y=0, d∂yG|y=0(s)
〉
Tp−1

ds

−
∫ T

0
α⟨πroad(s), G|y=0(s)⟩ +

∫ T

0
α
〈
[πfield(s) ∗ Ulow

ε ]|y=0, G|y=0(s)
〉
Tp−1

ds,

(4.15)
and

W road
π,H,ε(T ) := ⟨πroad(T ), H(T )⟩ − ⟨πroad(0), H(0)⟩ −

∫ T

0
⟨πroad(s), ∂sH(s)⟩ds

−
∫ T

0
⟨πroad(s), D∆xH(s)⟩ds−

∫ T

0
α
〈
[πfield(s) ∗ Ulow

ε ]|y=0, H(s)
〉
Tp−1

+
∫ T

0
α⟨πroad(s), H(s)⟩ds.

(4.16)
Thanks to Proposition 4.2, we know that Q∞ loads paths with densities (v(t, ))t∈[0,T ] in
L2(0, T ;H1(Λ)). As a consequence, the trace of v(t, ) at the boundaries Γup and Γlow is
well-defined and we have (see [25, Section 5.3])

lim
ε→0+

[πfield(s) ∗ Uup
ε ]| ∈Γup = v|y=1(s), Q∞-almost-surely in Γup,

and
lim

ε→0+
[πfield(s) ∗ Ulow

ε ]| ∈Γlow = v|y=0(s), Q∞-almost-surely in Γlow.

As a result of this

lim
ε→0+

∣∣∣Wu,v,(G,H)(T ) − W ε
π,(G,H)(T )

∣∣∣ = 0, Q∞-almost-surely. (4.17)

We can now bound the probability in (4.12) as follows

Q∞

(∣∣∣Wu,v,(G,H)(T )
∣∣∣ > δ

)
= Q∞

(∣∣∣Wu,v,(G,H)(T ) − W ε
π,(G,H)(T ) + W ε

π,(G,H)(T )
∣∣∣ > δ

)

≤ Q∞

(∣∣∣Wu,v,(G,H)(T ) − W ε
π,(G,H)(T )

∣∣∣ > δ/2
)

+ Q∞

(∣∣∣W ε
π,(G,H)(T )

∣∣∣ > δ/2
)

≤ Q∞

(∣∣∣Wu,v,(G,H)(T ) − W ε
π,(G,H)(T )

∣∣∣ > δ/2
)

+ lim inf
N→∞

QµN

N

(∣∣∣W ε
πN ,(G,H)(T )

∣∣∣ > δ/2
)
, (4.18)



22 Matthieu Alfaro, Mustapha Mourragui, and Samuel Tréton

where we used the Portmanteau Theorem to write the last inequality. While the vanishing
of the first term in (4.18) as ε → 0+ is a straight consequence of (4.17), the second one
requires further attention. By considering the probability under the limit in this second
term, we control it by this way:

QµN

N

(∣∣∣W ε
πN ,(G,H)(T )

∣∣∣ > δ/2
)

= QµN

N

(∣∣∣W ε
πN ,(G,H)(T ) − MN(T ) + MN(T )

∣∣∣ > δ/2
)

≤ QµN

N

(∣∣∣W ε
πN ,(G,H)(T ) − MN(T )

∣∣∣ > δ/4
)

+ QµN

N

(∣∣∣MN(T )
∣∣∣ > δ/4

)
,

≤ 4
δ
EµN

N

(∣∣∣W ε
πN ,(G,H)(T ) − MN(T )

∣∣∣)+ QµN

N

(∣∣∣MN(T )
∣∣∣ > δ/4

)
, (4.19)

where we recall that the martingale MN(T ) is defined in (3.1). In (4.19), the vanishing
of QµN

N (|MN(T )| > δ/4) can be shown by using the Doob’s inequality:

QµN

N

(∣∣∣MN(T )
∣∣∣ > δ/4

)
≤ QµN

N

(
sup

0≤t≤T

∣∣∣MN(t)
∣∣∣ > δ/4

)
≤ 16
δ2 E

µN

N

([
MN(T )

]2)

(3.3)= 16
δ2 E

µN

N

(
NN(T ) +

∫ T

0
BN(s)ds

)

= 16
δ2 E

µN

N

(∫ T

0
BN(s)ds

)
,

that goes to zero as N → ∞ — see the control of BN(s) below (3.16). Now we focus on
the remaining expectation in (4.19), and note that the quantity |W ε

πN ,(G,H)(T ) − MN(T )|
can be bounded by the sum of the following terms∣∣∣∣∣

∫ T

0
⟨πfield

N (s), d(∆ − ∆N
x −∂N

yy)G(s)⟩ +O(1/N) ds
∣∣∣∣∣ , (4.20)

∣∣∣∣∣∣
∫ T

0

〈
[πfield

N (s) ∗ Uup
ε ]|y=1, d∂yG|y=1(s)

〉
Tp−1

− 1
Np−1

∑
i∈Γup

N

d∂N
y G(s, i

N
)×ηs(i) ds

∣∣∣∣∣∣ , (4.21)

∣∣∣∣∣∣∣
∫ T

0

〈
[πfield

N (s) ∗ Ulow
ε ]|y=0, d∂yG|y=0(s)

〉
Tp−1

− 1
Np−1

∑
i∈Γlow

N

d∂N
y G(s, i

N
)×ηs(i) ds

∣∣∣∣∣∣∣ , (4.22)

∣∣∣∣∣∣∣
∫ T

0
α
〈
[πfield

N (s) ∗ Ulow
ε ]|y=0, G|y=0(s)

〉
Tp−1

− α

Np−1

∑
i∈Γlow

N

G(s, i
N

)×ηs(i) ds

∣∣∣∣∣∣∣ , (4.23)

∣∣∣∣∣
∫ T

0
α ⟨πroad

N (s), G|y=0(s) −G|y= 1
N

(s)⟩ ds
∣∣∣∣∣ , (4.24)

∣∣∣∣∣∣
∫ T

0

1
Np

∑
i∈Γup

N

G(s, i
N

)× (b− ηs(i))ds
∣∣∣∣∣∣ , (4.25)
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for the “field parts”, and ∣∣∣∣∣
∫ T

0
⟨πroad

N (s), D(∆x − ∆N
x )H(s)⟩ ds

∣∣∣∣∣ , (4.26)

∣∣∣∣∣∣∣
∫ T

0
α
〈
[πfield

N (s) ∗ Ulow
ε ]|y=0, H(s)

〉
Tp−1

− α

Np−1

∑
i∈Γlow

N

H(s, i
N

)×ηs(i) ds

∣∣∣∣∣∣∣ , (4.27)

for the “road parts”. To conclude this proof, it remains to argue that all these terms (4.20)-
(4.27) vanish in the limit N → ∞ then ε → 0+. First of all, due to the regularity of the
test functions G and H, it is clear that (4.20), (4.24) and (4.26) go to zero as N → ∞.
Notice then that (4.25) associated to the upper spawn/kill dynamics is a O(1/N). Lastly,
the vanishing of (4.21)-(4.22)-(4.23)-(4.27) arises from the Replacement lemmas (Lemma
4.4 and Lemma 4.5), the approximation of ηεN

s (i) with the convolution products (4.13)
and (4.14), and the regularity of the test functions G and H.

5 Uniqueness of the solution

In this last section, we establish the uniqueness of the weak solutions to the Cauchy prob-
lem (1.2)-(1.3) in the sense (W1)-(W2). Our proof relies on testing the weak formulation
(W2) against the solutions (G,H) to a “dual problem” related to (1.2).

Proposition 5.1 (Uniqueness) There exists at most one solution (v, u) to the Cauchy
problem (1.2)-(1.3) in the sense (W1)-(W2).

Proof of Proposition 5.1 (Uniqueness). By linearity it is enough to consider the
case (v0, u0) ≡ (0, 0). Given any φ ∈ C∞

c ([0, T ] × Λ) and any ψ ∈ C∞
c ([0, T ] × Tp−1), we

consider the problem

−∂tG− d∆G = φ, t ∈ (0, T ) , x ∈ Tp−1, y ∈ (0, 1) ,
−d∂yG|y=0 = α(H −G|y=0), t ∈ (0, T ) , x ∈ Tp−1, y = 0,
−∂tH −D∆xH − α(G|y=0 −H) = ψ, t ∈ (0, T ) , x ∈ Tp−1,

∂yG|y=1 = 0, t ∈ (0, T ) , x ∈ Tp−1, y = 1,
(5.1)

supplemented with final condition G|t=T ≡ 0, x ∈ Tp−1, y ∈ (0, 1) ,
H|t=T ≡ 0, x ∈ Tp−1.

(5.2)

By letting (G̃(t), H̃(t)) = (G(T − t), H(T − t)), we can notice that the problem (5.1)-(5.2)
is actually a reversed-time field-road system with sources, namely

∂tG̃ = d∆G̃+ φ, t ∈ (0, T ) , x ∈ Tp−1, y ∈ (0, 1) ,
−d∂yG̃|y=0 = α(H̃ − G̃|y=0), t ∈ (0, T ) , x ∈ Tp−1, y = 0,
∂tH̃ = D∆xH̃ + α(G̃|y=0 − H̃) + ψ, t ∈ (0, T ) , x ∈ Tp−1,

∂yG̃|y=1 = 0, t ∈ (0, T ) , x ∈ Tp−1, y = 1,

(5.3)
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provided with trivial initial data. In absence of sources, the solution is known through the
“field-road heat kernel”, that could be computed thanks to an adaptation of the technics
in [3], see Remark 5.2. By combining this with the Duhamel principle, see [32, Chapter 4,
Section 3] for instance, we obtain the classical solution to the above problem with sources.
Note also that so-called “reaction-diffusion arguments” may also be applied, see Remark
5.2 again. As a result, we own G ∈ C1,2([0, T ]×Λ) and H ∈ C1,2([0, T ]×Tp−1) that satisfy
(5.1)-(5.2), and that are sufficiently smooth to be tested in the weak formulation (W2).
By plugging (G,H) into (2.7) and (2.8), and then summing the two obtained results, we
are left with ∫ T

0
⟨v(s), φ(s)⟩Λ ds+

∫ T

0
⟨u(s), ψ(s)⟩Tp−1 ds = 0,

that holds for any φ ∈ C∞
c ([0, T ] × Λ) and any ψ ∈ C∞

c ([0, T ] × Tp−1). In particular we
have


∀φ ∈ C∞

c ([0, T ] × Λ),
∫ T

0
⟨v(s), φ(s)⟩Λ ds = 0,

∀ψ ∈ C∞
c ([0, T ] × Tp−1),

∫ T

0
⟨u(s), ψ(s)⟩Tp−1 ds = 0.

(5.4)

From (5.4), we can deduce that v and u are both identically zero, see [17, Lemma IV.2],
and the proof is therefore completed.

Remark 5.2 Let us recall that, originally, the purely diffusive field-road model, obtained
by letting f ≡ 0 in (1.1), was posed in the half-space Rp−1 × (0,+∞). Very recently,
an explicit expression for its fundamental solution, and for the solution to the associated
Cauchy problem, was obtained in [3]. The main ingredient is to apply a “Fourier on the
road variable x ∈ Rp−1/Laplace on the time variable t ∈ (0,+∞) transform” to reach
a linear second order ODE for the Fourier/Laplace transform of the solution which is
function of y ∈ (0,+∞) only (the Fourier variables ξ ∈ Rp−1 and the Laplace variable
s ∈ (0,+∞) serving as parameters), see equation (4.3) in [3]. This ODE is supplemented
by the Fourier/Laplace transform of the Exchange condition at y = 0 and by the vanishing
condition as y → +∞. After that, it “remains” to solve the ODE and to semi-implicitly
invert the Fourier/Laplace transform to obtain the solution.

In the present work, the purey diffusive field-road model is posed on Tp−1 × (0, 1).
Because of that, one should use the Fourier series to deal with the variable x ∈ Tp−1 (in
place of the Fourier transform) and, still, the Laplace transform to deal with the variable
t ∈ (0,+∞). After that, one would reach a linear second order ODE for a function of
y ∈ (0, 1) only (the Fourier indexes n ∈ Zp−1 and the Laplace variable s ∈ (0,+∞)
serving as parameters). This ODE would be supplemented by the adequate transform of
the Exchange condition at y = 0, as in [3], and a Neumann boundary condition at y = 1,
in contrast with [3]. Such computations would deserve a lengthy analysis, are out the
scope of the present work, but the path is well mapped and we are very confident on the
outcome.

Note also that another possibility would be to adapt the so-called “reaction-diffusion
arguments” (parabolic regularity, comparison principle, etc.) used in [10, Proposition 3.1]
for the field-road model posed in the half-space.
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Appendix

A.1 Some tools and basic estimates

To prove the upper Replacement lemma (Lemma 4.4) and the energy estimate (Lemma
4.3), we first need to introduce the relative entropy H and the Dirichlet form DN . These
notions are rather classical and can be found in [34, Appendix 1, Sections 7-8-9-10] for
instance.

For γ ∈ (0, 1), we denote by νN = νfield
N,γ ⊗ νroad

N,γ the Bernoulli product measure on SN

whose marginals are given by

νfield
N,γ

[
η( ) = •

]
=
{
γ if • = 1,
1 − γ if • = 0, for any ∈ ΛN , and

νroad
N,γ

[
ξ(i) = •

]
=
{
γ if • = 1,
1 − γ if • = 0, for any i ∈ Γlow

N .

The probability measure νN on SN offers interesting properties to work with the relative
entropy and the Dirichlet form. Indeed, since νN gives a positive probability to each
configuration (η, ξ) ∈ SN , any probability measure µN on SN is absolutely continuous
with respect to νN . Moreover, the changes of variable of type “flip” or “switch” as done
below are very simple to express when integrating with respect to νN .

For a probability measure µN on SN , the entropy of µN with respect to νN is defined
as the positive value

H
(
µN |νN

)
:= sup

f∈RSN


∫

SN

f(η, ξ) dµN(η, ξ) − log
[∫

SN

ef(η,ξ) dνN(η, ξ)
].

Since µN is absolutely continuous with respect to νN , the entropy can be explicitly written
as [34, Appendix 1, Sections 8, Theorem 8.3]

H
(
µN |νN

)
=
∫

SN

log
[
dµN

dνN

(η, ξ)
]
dµN(η, ξ) =

∑
(η,ξ)∈SN

µN(η, ξ) log
[
µN(η, ξ)
νN(η, ξ)

]
,

where dµN/dνN denotes the Radon-Nikodym derivative of µN with respect to νN and the
last equality is a consequence of the finiteness of SN . By decomposing µN as a convex
combination of Dirac masses and using the convexity of the entropy, we can show that

H
(
µN |νN

)
≤ C0N

p, (A.1)

for C0 := − log(min(γ, 1 − γ)) > 0.
Given a function f : SN → R, the Dirichlet form associated to the dynamics can be

defined as
DN(f, νN) := −⟨LNf, f⟩νN (A.2)

and may be split following the different parts of LN — see (2.1) — into

DN = N2 Dfield
N +N2 Droad

N +N DRob
N +Dreac

N +Dup
N . (A.3)
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At some points in the proofs of upper Replacement lemma (Lemma 4.4) and the energy
estimate (Lemma 4.3), it becomes essential to control each component of DN . These
controls are encapsulated in Lemma A.1 below, and require to introduce the functional

IN = IN(f, νN) := N2 Ifield
N +N2 Iroad

N +N IRob
N + I reac

N + Iup
N , (A.4)

where, for any f : SN → R,

Ifield
N (f, νN) := d

2
∑

, ∈ΛN

| − |=1

∫
SN

[√
f(η , , ξ) −

√
f(η, ξ)

]2
dνN(η, ξ),

Iroad
N (f, νN) := D

2
∑

i,k∈Γlow
N

|i−k|=1

∫
SN

[√
f(η, ξi,k) −

√
f(η, ξ)

]2
dνN(η, ξ),

IRob
N (f, νN) := α

∑
i∈Γlow

N

∫
SN

(
η(i) − ξ(i)

)2
[√

f(ηi, ξ) −
√
f(η, ξ)

]2
dνN(η, ξ),

I reac
N (f, νN) := α

∑
i∈Γlow

N

∫
SN

(
η(i) − ξ(i)

)2
[√

f(η, ξi) −
√
f(η, ξ)

]2
dνN(η, ξ),

Iup
N (f, νN) :=

∑
i∈Γup

N

∫
SN

(
b(1 − η(i)) + (1 − b)η(i)

) [√
f(ηi, ξ) −

√
f(η, ξ)

]2
dνN(η, ξ),

are all nonnegative.

Lemma A.1 (Control of the Dirichlet forms) For any density function f : SN → R with
respect to the Bernoulli product measure νN on SN with parameter γ, we have

(D1) For any γ ∈ (0, 1),

⟨Lfield
N

√
f,
√
f⟩νN = −Dfield

N (
√
f, νN) = −1

2I
field
N (f, νN). (A.5)

(D2) For any γ ∈ (0, 1),

⟨Lroad
N

√
f,
√
f⟩νN = −Droad

N (
√
f, νN) = −1

2I
road
N (f, νN). (A.6)

(D3) For any γ ∈ (0, 1),

⟨LRob
N

√
f,
√
f⟩νN = −DRob

N (
√
f, νN) = −1

2I
Rob
N (f, νN) + εN(α, γ, f). (A.7)
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(D4) For any γ ∈ (0, 1),

⟨Lreac
N

√
f,
√
f⟩νN = −Dreac

N (
√
f, νN) = −1

2I
reac
N (f, νN) + εN(α, γ, f). (A.8)

(D5) For γ = b,
⟨Lup

N

√
f,
√
f⟩νN = −Dup

N (
√
f, νN) = −1

2I
up
N (f, νN). (A.9)

In (D3) and (D4), εN(α, γ, f) is twice the same quantity, and such that

|εN(α, γ, f)| ≤ c(γ)αNp−1. (A.10)

Proof of Lemma A.1, (D1). By writing Dfield
N from (A.2) and (2.2), we get

−Dfield
N (

√
f, νN) = d

4
∑

, ∈ΛN

| − |=1

∫
SN

[√
f(η , , ξ) −

√
f(η, ξ)

]√
f(η, ξ) dνN(η, ξ)

+ d

4
∑

, ∈ΛN

| − |=1

∫
SN

[√
f(η , , ξ) −

√
f(η, ξ)

]√
f(η, ξ) dνN(η, ξ).

We use then the change of variable η̃ := η , in the second integral. Since the measure
νN is a Bernoulli product measure with constant parameter γ, νN(η, ξ) = νN(η , , ξ), for
any (η, ξ) ∈ SN . We thus have

−Dfield
N (

√
f, νN) = d

4
∑

, ∈ΛN

| − |=1

∫
SN

[√
f(η , , ξ) −

√
f(η, ξ)

]√
f(η, ξ) dνN(η, ξ)

+ d

4
∑

, ∈ΛN

| − |=1

∫
SN

[√
f(η, ξ) −

√
f(η , , ξ)

]√
f(η , , ξ) dνN(η, ξ)

from which follows (A.5).
Proof of Lemma A.1, (D2). Follow the same method as in the proof of (D1).
Proof of Lemma A.1, (D3). For clarity, let us introduce the notations

F :=
√
f(η, ξ) and F i :=

√
f(ηi, ξ). (A.11)

By writing Dfield
N from (A.2) and (2.4), we get

−DRob
N (

√
f, νN) = α

2
∑

i∈Γlow
N

∫
SN

(η(i) − ξ(i))2(F i − F )F dνN(η, ξ)

+ α

2
∑

i∈Γlow
N

∫
SN

η(i)=0
(η(i) − ξ(i))2(F i − F )F dνN(η, ξ)

+ α

2
∑

i∈Γlow
N

∫
SN

η(i)=1
(η(i) − ξ(i))2(F i − F )F dνN(η, ξ).
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We then use the change of variable η̃ := ηi in the integral of the second and third line so
that we have

νN(η, ξ) = νN(η̃, ξ)×

 (1 − γ)/γ if η(i) = 0,
γ/(1 − γ) if η(i) = 1,

= νN(η̃, ξ)×

 1 + 1−2γ
γ

if η(i) = 0,
1 + 2γ−1

1−γ
if η(i) = 1.

This results in
−DRob

N (
√
f, νN) = α

2
∑

i∈Γlow
N

∫
SN

(η(i) − ξ(i))2(F i − F )F dνN(η, ξ)

+ α

2
∑

i∈Γlow
N

∫
SN

(1 − η(i) − ξ(i))2(F − F i)F i dνN(η, ξ)

+ α

2
∑

i∈Γlow
N

1−2γ
γ

∫
SN

η̃(i)=1
(1 − η̃(i) − ξ(i))2(F − F i)F i dνN(η̃, ξ)

+ α

2
∑

i∈Γlow
N

2γ−1
1−γ

∫
SN

η̃(i)=0
(1 − η̃(i) − ξ(i))2(F − F i)F i dνN(η̃, ξ).

Now observe that (1 − η(i) − ξ(i))2 = (η(i) − ξ(i))2 + (1 − 2η(i))(1 − 2ξ(i)) and plug this
into the second line above. This directly yields (A.7) with

εN(α, γ, f) = α

2
∑

i∈Γlow
N

∫
SN

(1 − 2η(i))(1 − 2ξ(i))(F − F i)F i dνN(η, ξ)

+ α

2
∑

i∈Γlow
N

1−2γ
γ

∫
SN

η(i)=1
(1 − η(i) − ξ(i))2(F − F i)F i dνN(η, ξ)

+ α

2
∑

i∈Γlow
N

2γ−1
1−γ

∫
SN

η(i)=0
(1 − η(i) − ξ(i))2(F − F i)F i dνN(η, ξ),

and the control of εN (A.10) arises from the Cauchy-Schwarz inequality and the fact that
f is a density with respect to the Bernoulli product measure νN .
Proof of Lemma A.1, (D4). Follow the same method as in the proof of (D3).
Proof of Lemma A.1, (D5). As in the proof of (D3), we employ the notations F and
F i defined in (A.11). By writing Dup

N from (A.2) and (2.6), we get

−Dup
N (
√
f, νN) = b

∑
i∈Γup

N

∫
SN

η(i)=0
(F iF − 1

2F
2) dνN(η, ξ) − b

∑
i∈Γup

N

∫
SN

η(i)=0

1
2F

2 dνN(η, ξ)

+ (1 − b)
∑

i∈Γup
N

∫
SN

η(i)=1
(F iF − 1

2F
2) dνN(η, ξ) − (1 − b)

∑
i∈Γup

N

∫
SN

η(i)=1

1
2F

2 dνN(η, ξ).

We then use the change of variable η̃ := ηi in the second and fourth integrals above so
that we have

νN(η̃, ξ) = νN(η, ξ)×

 γ/(1 − γ) if η(i) = 0,
(1 − γ)/γ if η(i) = 1,

resulting in

−Dup
N (
√
f, νN) = b

∑
i∈Γup

N

∫
SN

η(i)=0
(F iF − 1

2F
2) dνN(η, ξ) − (1−γ)b

γ

∑
i∈Γup

N

∫
SN

η̃(i)=1

1
2(F i)2 dνN(η̃, ξ)

+(1 − b)
∑

i∈Γup
N

∫
SN

η(i)=1
(F iF − 1

2F
2) dνN(η, ξ) − γ(1−b)

1−γ

∑
i∈Γup

N

∫
SN

η̃(i)=0

1
2(F i)2 dνN(η̃, ξ).
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By choosing γ = b, we get

−Dup
N (
√
f, νN) = − b

2
∑

i∈Γup
N

∫
SN

η(i)=0

(
F 2 − 2F iF + (F i)2

)
dνN(η, ξ)

− 1 − b

2
∑

i∈Γup
N

∫
SN

η(i)=1

(
F 2 − 2F iF + (F i)2

)
dνN(η, ξ)

= −1
2
∑

i∈Γup
N

∫
SN

(
b(1 − η(i)) + (1 − b)η(i)

) (
F i − F

)2
dνN(η, ξ),

that is (A.9).
We also need some useful inequalities that are gathered in the following lemma.

Lemma A.2 (Useful inequalities)

(I1) For any a > 0, any p ∈ N∗, and any sequence of positive numbers (aN) and (bN),
we have

lim sup
N→∞

1
aNp

log(aN + bN) ≤ max
(

lim sup
N→∞

1
aNp

log(aN), lim sup
N→∞

1
aNp

log(bN)
)
.

(I2) For any z ∈ R we have e|z| ≤ ez + e−z.

(I3) For any X, Y ∈ R and any B > 0, we have XY ≤ 1
2B
X2 + B

2 Y
2.

(I4) For any X, Y ∈ R, we have (X+Y )2

2 ≤ X2 + Y 2.

A.2 Proof of the upper Replacement lemma

Proof of Lemma 4.4 (Replacement at the upper boundary). Consider the term
under the integral in (4.7), namely

AN,ε(G(s,
N

), ηs) := 1
Np−1

∑
∈Γup

N

G(s,
N

)
[
ηεN

s ( ) − ηs( )
]
. (A.12)

We develop ηεN
s ( ) in (A.12) with (4.5) and express that + , with = (k, ℓ−N + 1),

browses ΛεN . This yields

AN,ε(G(s,
N

), ηs) =
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
∈Γup

N

G(s,
N

)
[
ηs( + ) − ηs( )

]
.

(A.13)
In (A.13), focus on

∑
∈Γup

N

G(s,
N

)ηs( + ) =
∑
∈Γup

N

[
G(s,

N
) −G(s, +

N
)
]
ηs( + ) +

∑
∈Γup

N

G(s, +
N

)ηs( + ).

(A.14)
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Since G ∈ C1,2([0, T ] × Λ), the Mean Value Theorem allows to control, in the first sum of
(A.14),

|G(s,
N

) −G(s, +
N

)| ≤ pε sup
s∈[0,T ]

∥∇G(s, )∥L∞(Λ). (A.15)

For the second sum in (A.14), notice that we have, thanks to the periodicity of the torus
TN and the Mean Value Theorem,

∑
∈Γup

N

G(s, +
N

)ηs( + ) =
∑

i∈Tp−1
N

G(s, i+k
N
, ℓ

N
)ηs(i+ k, ℓ)

=
∑

i∈Tp−1
N

G(s, i
N
, ℓ

N
)ηs(i, ℓ)

=
∑

i∈Tp−1
N

[
G(s, i

N
, N−1

N
) + N − 1 − ℓ

N
C1(G,N)

]
ηs(i, ℓ), (A.16)

where there is y ∈ (0, 1) such that

|C1(G,N)| = |∂yG(s, i
N
, y)| ≤ sup

s∈[0,T ]
∥∇G(s, )∥L∞(Λ). (A.17)

Now using (A.14) and (A.16) into the expression of AN,ε in (A.13), we obtain

AN,ε(G(s,
N

), ηs)

=
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
∈Γup

N

[
G(s,

N
) −G(s, +

N
)
]
ηs( + ) (A.18)

+
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

N − 1 − ℓ

N
C1(G,N)ηs(i, ℓ) (A.19)

+
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

G(s, i
N
, N−1

N
) [ηs(i, ℓ) − ηs(i, N − 1)] . (A.20)

Therefore we have

EµN

N

∣∣∣∣∣
∫ T

0

1
Np−1

∑
∈Γup

N

G(s,
N

)
[
ηεN

s ( ) − ηs( )
]
ds

∣∣∣∣∣


≤EµN

N

∣∣∣∣∣
∫ T

0
(A.18) ds

∣∣∣∣∣
+ EµN

N

∣∣∣∣∣
∫ T

0
(A.19) ds

∣∣∣∣∣
+ EµN

N

∣∣∣∣∣
∫ T

0
(A.20) ds

∣∣∣∣∣
. (A.21)
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In (A.21), the vanishing of the two first expectations is a straight consequence of the
upper bounds (A.15) and (A.17). Indeed, for the first expectation in (A.21), we have

EµN

N

∣∣∣∣∣
∫ T

0
(A.18) ds

∣∣∣∣∣


= EµN

N

∣∣∣∣∣
∫ T

0

∑
k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
∈Γup

N

[
G(s,

N
) −G(s, +

N
)
]
ηs( + ) ds

∣∣∣∣∣


≤
∫ T

0

∑
k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
∈Γup

N

∣∣∣∣G(s,
N

) −G(s, +
N

)
∣∣∣∣︸ ︷︷ ︸

control this with (A.15)

ds

≤ Tpε sup
s∈[0,T ]

∥∇G(s, )∥L∞(Λ) ×
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

︸ ︷︷ ︸
= 1

× 1
Np−1

∑
∈Γup

N

1

︸ ︷︷ ︸
= 1

= Tpε sup
s∈[0,T ]

∥∇G(s, )∥L∞(Λ)

that vanishes as ε → 0+. Similarly,

EµN

N

∣∣∣∣∣
∫ T

0
(A.19) ds

∣∣∣∣∣


= EµN

N

∣∣∣∣∣
∫ T

0

∑
k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

≤ ε︷ ︸︸ ︷
N − 1 − ℓ

N
C1(G,N)ηs(i, ℓ) ds

∣∣∣∣∣


≤ Tε
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
∈Γup

N

|C1(G,N)|︸ ︷︷ ︸
control this with (A.17)

≤ Tε sup
s∈[0,T ]

∥∇G(s, )∥L∞(Λ)

that also vanishes as ε → 0+. The last expectation outlined in (A.21), namely

EµN

N

∣∣∣∣∣
∫ T

0
(A.20) ds

∣∣∣∣∣


= EµN

N

∣∣∣∣∣
∫ T

0

∑
k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

G(s, i
N
, N−1

N
) [ηs(i, ℓ) − ηs(i, N − 1)] ds

∣∣∣∣∣


(A.22)

captures key information about the y-direction of ηs in the region ΛεN . The vanishing of
this expectation is actually the core of this proof.

Given any fixed a > 0 (which will eventually be increased to +∞), we use the entropy
inequality (see [34, Appendix 1, Section 8]) on (A.22). This yields

EµN

N

∣∣∣∣∣
∫ T

0
(A.20) ds

∣∣∣∣∣
 ≤ 1

aNp
log

EνN
N

[
exp

(
aNp

∣∣∣∣ ∫ T

0
(A.20) ds

∣∣∣∣
) ]+ 1

aNp
H
(
µN |νN

)
. (A.23)
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Thanks to the control we have on H(µN |νN), as outlined in (A.1), the second term in
(A.23) is bounded by C0/a that vanishes when a → ∞. Therefore, to conclude the proof,
it is enough to show that, for any a > 0,

lim
ε→0+

lim
N→∞

1
aNp

log
EνN

N

[
exp

(
aNp

∣∣∣∣ ∫ T

0
(A.20) ds

∣∣∣∣
) ] = 0.

Now, we remark that we can get rid of the absolute value into the exponential of this last
expression. Indeed, by combining (I2) and (I1) in Lemma A.2 with

z = aNp
∫ T

0
(A.20) ds, an = EνN

N (ez), and bn = EνN
N (e−z),

we have

lim sup
N→∞

1
aNp

log
(
EνN

N (e|z|)
)

≤ max
 lim sup

N→∞

1
aNp

log
(
EνN

N (ez)
)
, lim sup

N→∞

1
aNp

log
(
EνN

N (e−z)
),

and therefore (up to take −G instead of G) we only have to prove, when first N → ∞,
and then ε → 0+, the vanishing of

1
aNp

log
(
EνN

N (ez)
)

= 1
aNp

log
EνN

N

[
exp

(
aNp

∫ T

0
(A.20) ds

)].
We use now the Feynman-Kac’s inequality — see [4, Lemma 7.3 in Appendix] — with

the operator LN + aNp V (s, ) where

V (s, ) : η 7→
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

G(s, i
N
, N−1

N
) [η(i, ℓ) − η(i, N − 1)] . (A.24)

With the variational formula (Rayleigh quotient) for the largest (principal) eigenvalue of
the operator LN + aNp V (s, ), we are led to

1
aNp

log
EνN

N

[
exp

(
aNp

∫ T

0
(A.20) ds

)]
≤
∫ T

0
sup

f density
with respect

to νN

{∫
SN

V (s, η) f(η, ξ) dνN(η, ξ) + 1
aNp

⟨LN

√
f,
√
f⟩νN

}
ds. (A.25)

Now focus on the integral term into the supremum in (A.25). By using a telescopic sum
to write the differences η(i, ℓ) − η(i, N − 1) in V (s, η) as defined in (A.24), we get∫

SN

V (s, η) f(η, ξ) dνN(η, ξ)

=
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

G(s, i
N
, N−1

N
)

×
N−2∑
m=ℓ

∫
SN

[η(i,m) − η(i,m+ 1)] f(η, ξ) dνN(η, ξ). (A.26)
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In (A.26), we focus on∫
SN

[η(i,m) − η(i,m+ 1)] f(η, ξ) dνN(η, ξ)

=
∫

SN

η(i,m) f(η, ξ) dνN(η, ξ) −
∫

SN

η(i,m+ 1) f(η, ξ) dνN(η, ξ). (A.27)

In the first integral in (A.27), we perform the change of variable

η 7→ η(i,m),(i,m+1) =: η 0, 1 .

Since νN(η, ξ) = νN(η 0, 1 , ξ) for any (η, ξ) ∈ SN , this gives∫
SN

[η(i,m) − η(i,m+ 1)] f(η, ξ) dνN(η, ξ)

=
∫

SN

η( 1)
[
f(η 0, 1 , ξ) − f(η, ξ)

]
dνN(η, ξ)

=
∫

SN

η( 1)
[√

f(η 0, 1 , ξ) −
√
f(η, ξ)

] [√
f(η 0, 1 , ξ) +

√
f(η, ξ)

]
︸ ︷︷ ︸

use (I3) at this point

dνN(η, ξ).

≤ B

2

∫
SN

η( 1)
[√

f(η 0, 1 , ξ) −
√
f(η, ξ)

]2
dνN(η, ξ) (A.28)

+ 1
2B

∫
SN

η( 1)
[√

f(η 0, 1 , ξ) +
√
f(η, ξ)

]2
dνN(η, ξ), (A.29)

where B > 0 is to be determined later in this proof. In (A.29) we now use (I4) and the
facts that f is a density with respect to νN , 0 ≤ η( 1) ≤ 1, and νN(η, ξ) = νN(η 0, 1 , ξ)
for any (η, ξ) ∈ SN , to write∫

SN

[η(i,m) − η(i,m+ 1)] f(η, ξ) dνN(η, ξ)

≤ B

2

∫
SN

η( 1)
[√

f(η 0, 1 , ξ) −
√
f(η, ξ)

]2
dνN(η, ξ) + 2

B
. (A.30)

Incorporating (A.30) into (A.26) yields∫
SN

V (s, η) f(η, ξ) dνN(η, ξ)

≤
∑

k∈[−⌈εN⌉,⌈εN⌉]p−1

N−1∑
ℓ=⌈N−1−εN⌉

cN,ε

Np−1

∑
i∈Tp−1

N

G(s, i
N
, N−1

N
)

×
N−2∑
m=ℓ

[
B

2

∫
SN

η( 1)
[√

f(η 0, 1 , ξ) −
√
f(η, ξ)

]2
dνN(η, ξ) + 2

B

]

≤ ∥G(s, )∥L∞(Λ)

 B

2Np−1

∑
i∈Tp−1

N

N−2∑
m=0

∫
SN

[√
f(η 0, 1 , ξ) −

√
f(η, ξ)

]2
dνN(η, ξ) + 2εN

B


(A.31)

where we used that ∑
k

∑
ℓ
cN,ε = 1, 1

Np−1
∑
i

1 = 1, and

N − 1 − ℓ ≤ εN for all ℓ ∈ J⌈N − 1 − εN⌉;N − 1K.
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Now observe that we can make the Dirichlet form Dfield
N appear in (A.31) thanks to (D1).

This results in∫
SN

V (s, η) f(η, ξ) dνN(η, ξ) ≤ ∥G(s, )∥L∞(Λ)

[ 2B
dNp−1 Dfield

N (
√
f, νN) + 2εN

B

]
. (A.32)

By gathering (A.23), (A.25) and (A.32), we obtain

EµN

N

∣∣∣∣∣
∫ T

0
(A.20) ds

∣∣∣∣∣


≤
∫ T

0
sup

f density
with respect

to νN

{
∥G(s, )∥L∞(Λ)

[ 2B
dNp−1 Dfield

N (
√
f, νN) + 2εN

B

]
+ 1
aNp

⟨LN

√
f,
√
f⟩νN

}
ds+ C0

a

≤
∫ T

0

[
sup

f density
with respect

to νN

{[
2B∥G(s, )∥L∞(Λ)

dNp−1 − 1
aNp−2

]
Dfield

N (
√
f, νN)

}
+ 2εN∥G(s, )∥L∞(Λ)

B

]
ds+ C0 + 2c(b)α

a
,

(A.33)

where we used the whole Lemma A.1 (with γ = b in (A.10)) and the fact that −1
2I

road
N ,

−1
2I

up
N , −1

2I
reac
N and −1

2I
Rob
N are nonpositive to provide the last inequality. At this point,

we make the choice B := dN/(2a∥G(s, )∥L∞(Λ)) to cancel the supremum in (A.33), so
that we are left with

EµN

N

∣∣∣∣∣
∫ T

0
(A.20) ds

∣∣∣∣∣
 ≤ 4Tεa

d
sup

s∈[0,T ]
∥G(s, )∥2

L∞(Λ) + C0 + 2c(b)α
a

. (A.34)

By letting ε → 0+ and then a → ∞, we finally get the vanishing of EµN

N [|
∫ T

0 (A.20) ds|]
which, combined with those of EµN

N [|
∫ T

0 (A.18) ds|] and EµN

N [|
∫ T

0 (A.19) ds|] in (A.21), com-
pletes this proof.

A.3 Proof of the energy estimate

Proof of Lemma 4.3 (Energy estimate). For q ∈ J1; pK, G ∈ C0,2
c ([0, T ] × Λ) and

v ∈ L2(0, T ;L2(Λ)), let us write the quantity below the temporal integral in (4.3) as

JG(s) = JG(s, v, q) :=
〈
v(s), ∂eqG(s)

〉
Λ

− 1
2∥G(s)∥2

L2(Λ).

Now consider a sequence (Gn)n∈N dense in C0,2
c ([0, T ]×Λ), and observe that it is sufficient

to show that there is a constant C > 0 such that for any n0 ∈ N, we have

E∞

[
max

0≤n≤n0

{ ∫ T

0
JGn(s) ds

}]
< C, (A.35)

where E∞ denotes the expectation with respect to Q∞. Since the maps

(πN(t))t∈[0,T ] 7→
∫ T

0

(
⟨πfield

N (s), ∂eqGn(s)⟩ − 1
2∥Gn(s)∥2

L2(Λ)

)
ds

are continuous with respect to the Skorokhod topology, and since the probability Q∞ is
in the weak closure of (QµN

N )N≥2, then the expectation in (A.35) can be recast as

lim
N→∞

EµN

N

[
max

0≤n≤n0

{ ∫ T

0

(
⟨πfield

N (s), ∂eqGn(s)⟩ − 1
2∥Gn(s)∥2

L2(Λ)

)
ds
}]
,
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that is, by explaining the empirical measure πfield
N (s),

lim
N→∞

EµN

N

[
max

0≤n≤n0

{ ∫ T

0

( 1
Np

∑
∈ΛN

∂eqGn(s,
N

)×ηs( ) − 1
2∥Gn(s)∥2

L2(Λ)︸ ︷︷ ︸
=: JN

Gn
(s,η,q) = JN

Gn
(s).

)
ds
}]

(A.36)

For a fixed a > 0, we use the entropy inequality (see [34, Appendix 1, Section 8]) to bound
the expectation in (A.36) with

EµN

N

[
max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

}]

≤ 1
aNp

log
(
EνN

N

[
exp

(
aNp × max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

})])
+ 1
aNp

H
(
µN |νN

)
. (A.37)

Thanks to the control we have on H(µN |νN), as outlined in (A.1), the second term in
(A.37) is bounded by C0/a and does not pose a significant issue as long as a remains far
from 0. Now focusing on the first term in (A.37), notice that

EνN
N

[
exp

(
aNp × max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

})]
≤ EνN

N

[
n0∑

n=0
exp

(
aNp

∫ T

0
JN

Gn
(s) ds

)]

=
n0∑

n=0
EνN

N

[
exp

(
aNp

∫ T

0
JN

Gn
(s) ds

)]
.

This control allows to bootstrap (I1) (cf. Lemma A.2), providing

lim sup
N→∞

{
1

aNp
log

(
EνN

N

[
exp

(
aNp × max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

})])}

≤ max
0≤n≤n0

lim sup
N→∞

{
1

aNp
log

(
EνN

N

[
exp

(
aNp ×

∫ T

0
JN

Gn
(s) ds

)])}
. (A.38)

Working on the term between the bracket in (A.38), we use the Feynman-Kac’s inequality
— see [4] (Lemma 7.3 in Appendix) — with the operator LN + aNp JN

Gn
(s, , q). By using

the variational formula (Rayleigh quotient) for the largest (principal) eigenvalue of this
operator, we are led to

1
aNp

log
(
EνN

N

[
exp

(
aNp ×

∫ T

0
JN

Gn
(s) ds

)])

≤
∫ T

0
sup

f density
with respect

to νN

{ ∫
SN

( 1
Np

∑
∈ΛN

η( )∂eqGn(s,
N

)
)
f(η, ξ) dνN(η, ξ) + 1

aNp
⟨LN

√
f,
√
f⟩νN

}
ds (A.39)

−1
2

∫ T

0
∥Gn(s)∥2

L2(Λ) ds.

Considering the integral term into the supremum in (A.39), the regularity of Gn enables
to write

1
Np

∂eqGn(s,
N

) = 1
Np−1

(
Gn(s, +eq

N
) −Gn(s,

N
) + o(1/N)

)
,
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so that

∫
SN

( 1
Np

∑
∈ΛN

η( )∂eqGn(s,
N

)
)
f(η, ξ) dνN(η, ξ)

=
∫

SN

( 1
Np−1

∑
∈ΛN

η( )
(
Gn(s, +eq

N
) −Gn(s,

N
)
))

f(η, ξ) dνN(η, ξ) + oN(1).

Using then a summation by parts (mind the compact support of G) and the change of
variable η 7→ η , −eq , from the fact that νN(η, ξ) = νN(η , −eq , ξ) for any (η, ξ) ∈ SN , we
obtain

∫
SN

( 1
Np

∑
∈ΛN

η( )∂eqGn(s,
N

)
)
f(η, ξ) dνN(η, ξ) − oN(1)

= 1
Np−1

∑
∈ΛN

∫
SN

η( )Gn(s,
N

)
(
f(η, ξ) − f(η , −eq , ξ)

)
dνN(η, ξ)

= − 1
Np−1

∑
∈ΛN

∫
SN

η( )Gn(s,
N

)
[√

f(η , −eq , ξ) −
√
f(η, ξ)

] [√
f(η , −eq , ξ) +

√
f(η, ξ)

]
︸ ︷︷ ︸

use (I3) at this point

dνN(η, ξ)

≤ 1
Np−1

∑
∈ΛN

B

2

∫
SN

η( )
[√

f(η , −eq , ξ) −
√
f(η, ξ)

]2
dνN(η, ξ) (A.40)

+ 1
Np−1

∑
∈ΛN

1
2B

(
Gn(s,

N
)
)2 ∫

SN

η( )
[√

f(η , −eq , ξ) +
√
f(η, ξ)

]2
dνN(η, ξ), (A.41)

where B > 0 is to be determined later in this proof. In (A.41) we use now (I4) and the
facts that f is a density with respect to νN , 0 ≤ η( ) ≤ 1, and νN(η, ξ) = νN(η , −eq , ξ)
for any (η, ξ) ∈ SN , to write

∫
SN

( 1
Np

∑
∈ΛN

η( )∂eqGn(s,
N

)
)
f(η, ξ) dνN(η, ξ) − oN(1)

≤ 1
Np−1

∑
∈ΛN

B

2

∫
SN

η( )
[√

f(η , −eq , ξ) −
√
f(η, ξ)

]2
dνN(η, ξ) + 1

Np−1

∑
∈ΛN

2
B

(
Gn(s,

N
)
)2

≤ 2B
dNp−1D

field
N (

√
f, νN) + 2

BNp−1

∑
∈ΛN

(
Gn(s,

N
)
)2
, (A.42)
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where we used (D1) to provide (A.42). By gathering (A.37), (A.39) and (A.42), we obtain

EµN

N

[
max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

}]

≤
∫ T

0
sup

f density
with respect

to νN

{ 2B
dNp−1D

field
N (

√
f, νN) + 1

aNp
⟨LN

√
f,
√
f⟩νN

}
ds

+
∫ T

0

( 2
BNp−1

∑
∈ΛN

(
Gn(s,

N
)
)2

− 1
2∥Gn(s)∥2

L2(Λ)

)
ds+ C0

a
+ oN(1)

≤
∫ T

0
sup

f density
with respect

to νN

{[ 2B
dNp−1 − 1

aNp−2

]
Dfield

N (
√
f, νN)

}
ds (A.43)

+
∫ T

0

( 2
BNp−1

∑
∈ΛN

(
Gn(s,

N
)
)2

− 1
2∥Gn(s)∥2

L2(Λ)

)
ds+ C0 + c(b)α

a
+ oN(1),

where we used Lemma A.1 (with γ = b in (A.10)) to provide the last inequality. At this
point, we make the choice B := dN/2a to cancel the supremum in (A.43), so that we are
left with

EµN

N

[
max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

}]

≤
∫ T

0

( 4a
dNp

∑
∈ΛN

(
Gn(s,

N
)
)2

− 1
2∥Gn(s)∥2

L2(Λ)

)
ds+ C0 + c(b)α

a
+ oN(1). (A.44)

We take now a := d/8 to face the norm with the Riemann sum in (A.44), this results in

EµN

N

[
max

0≤n≤n0

{ ∫ T

0
JN

Gn
(s) ds

}]
≤ 8C0 + 8c(b)α

d
+ oN(1).

It remains to let N → ∞ to eventually reach (A.35) with C := (8C0 + 8c(b)α)/d. This
completes the proof.

Table of Notations

Notation Description
p Dimension of the field (the road is (p− 1)-dimensional)

T One-dimensional torus R/Z
Tp−1 Macroscopic road

Λ Macroscopic field Tp−1 × (0, 1)
Λ Closure of Λ
Γ Macroscopic frontier of the field ∂Λ = Tp−1 × {0, 1}
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Γup Macroscopic upper boundary of the field
Γlow Macroscopic lower boundary of the field

N Size of the microscopic particle system

TN One-dimensional discrete torus Z/NZ
Tp−1

N Microscopic road
ΛN Microscopic field TN × J1;N − 1K
ΓN Microscopic frontier of the field ∂ΛN = TN × {0, 1}
Γup

N Microscopic upper boundary of the field
Γlow

N Microscopic lower boundary of the field

= (i, j) Microscopic point on ΛN (i ∈ TN and j ∈ J1;N − 1K)
= (k, ℓ) Alternative microscopic point on ΛN if needed
= (x, y) Macroscopic point on Λ (x ∈ T and y ∈ (0, 1))
= (z, ω) Alternative macroscopic point on Λ if needed
eq qth canonical vector of Rp (1 ≤ q ≤ p)
ẽq qth canonical vector of Rp−1 (1 ≤ q ≤ p− 1)

(η, ξ) State of the system (η for the field and ξ for the road)
Sfield

N State space for the field {0, 1}ΛN ∋ η

Sroad
N State space for the road {0, 1}Γlow

N ∋ ξ

SN Whole state space Sfield
N × Sroad

N

πfield
N (η) Empirical measure on Sfield

N associated with η

πroad
N (ξ) Empirical measure on Sroad

N associated with ξ

πN(η, ξ) Empirical measure on SN associated with (η, ξ)
Mfield Set of positive measures on Sfield

N bounded by 1
Mroad Set of positive measures on Sroad

N bounded by 1
M Cartesian product Mfield × Mroad

T Time horizon
d,D Diffusion coefficients
α Exchange coefficient
b Birth rate at the upper boundary
γ Parameter of the Bernoulli product measures

PµN

N Probability measure on SN induced by µN and (ηt, ξt)t∈[0,T ]

QµN

N Probability measure on M induced by PµN

N and πN

Q∞ A point in the closure of (QµN

N )N≥2

EN Expectation with respect to PN

EµN

N Expectation with respect to PµN

N
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EνN
N Expectation with respect to PνN

N

E∞ Expectation with respect to Q∞

∆ Laplacian operator for the field
∆x Laplacian operator for the road
∆N

x Discrete Laplacian operator for the road
∂N

yy Discrete Laplacian operator in the y-direction
∇ Gradient operator for the field
∇x Gradient operator for the road
Tr Trace operator

G Test functions for the field
H Test functions for the road

Lfield
N Bulk field part of the generator

Lroad
N Bulk road part of the generator

LRob
N Robin exchange part of the generator

Lreac
N Reaction exchange part of the generator
Lup

N Upper reservoir part of the generator

DN Dirichlet form
Dfield

N Bulk field part of the Dirichlet form
Droad

N Bulk road part of the Dirichlet form
DRob

N Robin exchange part of the Dirichlet form
Dreac

N Reaction exchange part of the Dirichlet form
Dup

N Upper reservoir part of the Dirichlet form

H(µ|ν) Relative entropy of µ with respect to ν

MN(t) The Martingale
M field

N,G(t) Field part of the Martingale MN(t)
M road

N,H(t) Road part of the Martingale MN(t)
Bfield

N,G(t) “B”-part of the martingale N field
N,G (t)

Broad
N,H(t) “B”-part of the martingale N road

N,H (t)

SW1 Set of measures whose densities satisfy (W1)
SW2 Set of measures whose densities satisfy (W2)

Wu,v,(G,H)(T ) Functional of the weak formulation Wu,v,(G,H) = W field
v,G + W road

u,H

W field
v,G (T ) Functional of the weak formulation in the field

W road
u,H (T ) Functional of the weak formulation on the road
Uup

ε Upper unit approximation
Ulow

ε Upper unit approximation
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