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Introduction

In that Master’s thesis, we shall deal with the so-called Reaction-Diffusion Equations.
These are being used in a large range of fields such as chemical reactions studies, flame
propagations, evolution of some heated environment, neutron-scattering theory, genetics,
epidemiology... The discusion here points towards the population dynamics framework;
we therefore shall consider some groups of individuals evolving from an initial condition
over time and space due to their borns, deaths, and displacements. As an applied
mathematical domain, our aim is to present some concrete results in order to build
some explicit links between this report and the study of ecology. That’s why we mainly
shall wonder whether the species under consideration will be extinct in long time or
persist and invade the space. This report is divided in three main parts:

• In first part, we discuss on Reaction-Diffusion Equations in the whole RN space.
It is an occasion to present to the reader a fiew kinds of reaction functions used in
population dynamics and to show some classical results such as the Hair Trigger
Effect theorem for Fisher-KPP reactions or the Aronson and Weinberger’s one.

• Second part consists in an presentation of the Field-Road model proposed in the
article of Berestycki et al. in the paper [4] published in 2018. That pattern allows
to induce some “fast diffusion channels” which modelises some faster displacements
of individuals along a certain axe (the Road) compared to the rest of the domain
(the Field). A fiew examples – like the one of the canadian wolfs – that justify
the need to developp such a pattern are given in the begining of the part. One
adapts then, following the paper of Berestycki et al., the classical Hair Trigger
Effect theorem for Fisher-KPP reaction to that Field-Road model and one finally
deals with some asymptotic spreading speed results.

• The third and last part contains some elements of research on the Berestycki et
al. Field-Road model: by introducing an Allee effect on the reaction term that
acts on the Field, our goal is to achieve an equivalent theorem of the Aronson
and Weinberger’s one in the Field-Road case. To do that, we have to follow the
thread of the proof of that theorem in the classical RN space which finally brings
us to consider the heat equation for that Field-Road system. As far we know, no
such development has been done in the litterature yet. To approach that issue
one has firstly simplified the problem by only considering the heat equation on
an half space provided with some homogenous Robin boundary conditions; such
conditions constitute actually a key aspect of that Field-Road model which is
then paramount to sharply understand before any further considerations.
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Introduction

Finally, we end this report with some additionnal content, that is

• some pieces of code in Scilab and FreeFem for numerical implementation,

• a toolbox for technical results,

• the bibliography,

• the correspondances to the notations used in the whole document.

If it may help him/her, the reader will also find an index of the principal notions in the
two last pages.

Wish you a nice read!
ST.
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PART I

Reaction-Diffusion Equations in RN

I.1 Reaction

We shall deal in this section with some non-spatial models. Considering a given
population evolving over time and let u (t) ∈ R+ denote the size of that population
(a)at time t ≥ 0. We suppose here the temporal evolution of the amount u (t) is
deterministically lead by a reaction function f : R→ R via the following autonomous
ODE:

u′ (t) = f (u (t)) .
Coupling the latter with some initial datum

u (0) = u0 ≥ 0,

we obtain a Cauchy problem.
The aim of this section is to recall some general and useful results about ODE

theory and to introduce the most classical examples used for the reaction function f in
population dynamics.

I.1.1 ODE: general and useful results

Let thus consider the following Cauchy problem:{
u′ (t) = f (u (t)) t ∈ (0;∞)
u (0) = u0,

(I.1)

where f ∈ C0 (R,R); we start by recalling the notion of solution for this problem.

a u (t) may also be the population density, assuming the latter is homogeneously distributed in
space.
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I. Reaction-Diffusion Equations in RN 1. Reaction

Definition 1 (Cauchy problem solution)
One calls a solution of (I.1) each couple “validity-interval/function” ([0;T ) , u) such
that

• T ∈ R∗+ ∪ {+∞}, and

• u ∈ C1 ([0;T ) ,R) satisfies

– first line of (I.1) for all t ∈ (0;T ),
– second line of (I.1).

A solution of (I.1) is said global if T = +∞.
We now announce the Cauchy-Lipschitz theorem which is the starting point of

the ODE theory. It gives us, under relatively weak assumptions on the function f , an
existence and uniqueness result for (I.1).

Theorem 2 (Cauchy-Lipschitz)
Consider the Cauchy problem (I.1).
1 If f : R→ R is

• continuous on R,

• locally Lipschitz continuous on R,

then (I.1) admit a unique maximal solution ([0;T ) , u) in the sense that whether
([0;T1) , u1) is another solution of (I.1) with the same initial datum, we necessarily get
T1 ≤ T .
2 Assume moreover we know a priori that

• there exists I ⊂ R such that u (t) ∈ I for all t ≥ 0,

• f is globally Lipschitz continuous on I,

then the solution ([0;T ) , u) given by 1 is actually global.

Remarks.

• Two different solutions of u′ = f (u) never “cross”.

• If u and v are solutions of (I.1) with respective initial datums u0 < v0, then
u (t) < v (t) for all t ≥ 0.

Proposition 3 (Sufficient conditions for Lipschitz continuity)
•Let I ⊆ R, assume f ∈ C1 (I,R), then f is locally Lipschitz continuous on I.
•If f ′ is moreover bounded on I (a), then f is globally Lipschitz continuous on I.

a It is the case as soon as I is compact.
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I. Reaction-Diffusion Equations in RN 1. Reaction

Hypothesis 1: We suppose from here that f ∈ C1 (R,R).

Definition 4 (Equilibrium point)
A point uE ∈ R is said an equilibrium point for the ODE u′ = f (u) if f (uE) = 0.

Remarks.

• If uE is an equilibrium point for u′ = f (u), then u ≡ uE is the unique global
solution starting from uE.

• If uE− < uE+ are two equilibrium points for u′ = f (u), then for all uE− < u0 < uE+ ,
the solution u starting from u0 is global and verifies uE− < u (t) < uE+ for all
t ≥ 0.

• In population dynamics, it seems realistic to choose the reaction function f such
that 0 is an equilibrium; from one part because the initial datum u0 = 0 naturally
leads to u ≡ 0 and from another part because it creates without artifice a barrier
between positive and negatives values of u (u < 0 is devoid of physical meaning).

• If all equilibriums points of u′ = f (u) are isolated, then, thanks to f ∈ C1, the
solutions are either constant (if the initial datum is an equilibrium) or strictly
monotonous (if the initial datum is between two successive equilibriums).

According to the last remark, one distinguish two kinds of equilibrium points
according their stability:

• asymptotically stable equilibriums: there exists a neighbourhood of the considering
equilibrium point such that each solution starting from this neighbourhood is
global and converges to the equilibrium as t tends to +∞.

• not asymptotically stable equilibriums: all equilibrium points which are not asymp-
totically stable.

Theorem 5 (Linearization around equilibrium points)
Assume f ∈ C2 (R,R) and let uE ∈ R be an equilibrium point for the ODE u′ = f (u).

• If f ′ (uE) < 0 then uE is asymptotically stable.

• If f ′ (uE) > 0 then uE is not asymptotically stable.

5



I. Reaction-Diffusion Equations in RN 1. Reaction

Figure F1 – Illustration of two equilibrium points for u′ = f (u) represented in blue.
The graph of f has been drown in red. Imagine an initial point u0 on the u-axis, then

this point moves over time, to the left if f < 0 and to the right if f > 0.

Remark. Under the assumptions of theorem 5, the case f ′ (uE) = 0 is a degenerate
one and does not allow us any conclusion. To be convinced, see for example figure (F2 )
below.

Figure F2 – Two examples which do not fall within the scope of theorem 5. Let us
take f± (x) = ±x3, then uE = 0 is an equilibrium point but f ′± (0) = 0. Therefore, no

conclusion is possible: as one sees on the figure, uE is asymptotically stable for
u′ = f− (u) but not for u′ = f+ (u),

I.1.2 Classical examples for the reaction function f

We present here some examples of reaction functions used in population dynamics. For
this purpose, we are especially based on the books of Roques [15] and Cantrell and
Cosner [5]. Before going into details, we start by giving the definition of growth rate
per capita which is an important notion to describe a model of reaction.

Definition 6 (Growth rate per capita)
One calls growth rate per capita of the reaction function f the amount

τf : u 7→
{
f (u) /u if u 6= 0
f ′ (0) otherwise.

6



I. Reaction-Diffusion Equations in RN 1. Reaction

Remarks.

• The growth rate per capita assess the average growth rate for a single individual.

• At first sight, it might be surprising to set τf (0) = f ′ (0); but it is actually not.
Indeed, under the assumption f (0) = 0, we have

f ′ (0) = lim
u→0

f (0 + u)− f (0)
u

= lim
u→0

τf (u) ,

i.e. f ′ (0) is none other than the extension by continuity of τf in u = 0.

Linear model

The first model we shall discuss on has been formulated by Malthus in 1798 who thought
[10] that human population was exponentially increasing due to the fact that number
of births and deaths was in proportional relation with population size. Thereby, the
reaction function given by this model is defined by

f (u) = ru,

where the constant r ∈ R denotes the growth rate per capita τf whose sign set the
growth (r > 0) or the decay (r < 0) of u. This model supposes natural resources
(b)unlimited which may turn out to be unrealistic for large values of u. Indeed, we
observe a posteriori that there exists an intraspecific competition for natural resources
which strongly influence individual’s births and deaths when u tends to be large. Thus,
because of these interactions, number of births and deaths cannot stay linear with
respect to u for high values of this one.

Logistic model

In order to take into consideration the intraspecific competition we noticed above, the
mathematician Verhulst suggested around 1840 [16] that the growth rate per capita was
a decreasing affine function – and not a constant function as it was supposed in the
Malthus model. We thus pose

τf (u) = r
(

1− u

K

)
, (r,K > 0) .

In that way, the growth rate per capita is maximal for u = 0 and becomes all the more
low as u becomes large due to competition between individuals. This leads to that
expression for the reaction f :

f (u) = ru
(

1− u

K

)
.

b Available space, feed, etc.

7



I. Reaction-Diffusion Equations in RN 1. Reaction

We may notice that uE = K is an asymptotically stable equilibrium point for u′ = f (u);
that value is called the carrying capacity and depends on the available natural resources
and on the ability of individuals to share these resources.

Figure F3 – Logistic model : on the left, the growth rate per capita which is maximal
when u = 0. On the right, the reaction function f .

KPP hypothesis versus Allee effect

In fact, the logistic reaction fits into a more general group of models which stand out
by satisfying the following hypothesis:

Definition 7 (KPP hypothesis)
We say that the reaction f satisfies the KPP hypothesis if the next inequality is verified:

f (u) ≤ uf ′ (0) ∀u ≥ 0.

Remark. The KPP hypothesis can also be defined as follows: f verifies the KPP
hypothesis if and only if the growth rate per capita τf (u) is maximal when u = 0.

Figure F4 – Illustration of KPP hypothesis: the graph of f cannot enter in the
shaded area.

With the intention of finding models even closer to reality, one can notice that the
interactions between individuals do not only occur as intraspecific competition but also

8



I. Reaction-Diffusion Equations in RN 1. Reaction

as mutual self-help whose absence might be prejudicial for the population development.
These mutualist interactions or their absences(c)may lead to

• some hurdles to growth for small populations caused for example by

– consanguinity,
– difficulties in finding a sexual partner,
– lower resistance to extreme weather phenomena,

• more facilities to growth for larger populations due for example to

– genetic mixing,
– cooperative hunt,
– group of defence,
– higher resistance to extreme weather phenomena.

This consideration brings us to touch on the notion of Allee effect that we define now.

Definition 8 (Allee effect)
One says that the reaction function f owns an Allee effet if its growth rate per capita
τf (u) is not maximal for u = 0.
If f owns an Allee effect and satisfies moreover τf (0) < 0 we talk about strong Allee
effect; otherwise the Allee effect is qualified weak.

Remark. The both properties

“to own an Allee effect”

“to satisfy the KPP hypothesis”

are antagonistic each other.

Monostable degenerate model

The model we shall show here owns a weak Allee effect. Let us take the following
reaction function:

f (u) = ru1+p
(

1− u

K

)
, (r, p,K > 0) .

We easily assess the growth rate per capita associated:

τf (u) = rup
(

1− u

K

)
whom maxima is achieved for u = Kp/(1 + p) > 0.

c Described for the first time by Allee in 1931 [1] and whom one finds a depth study in the
Courchamp’s book [6].

9



I. Reaction-Diffusion Equations in RN 1. Reaction

Figure F5 – Monostable degenerate model (weak Allee effect) : on the left, the
growth rate per capita which is not maximal when u = 0, i.e. there is an Allee effect;
furthermore, τf (0) = 0 is non-negative whence the Allee effect is a weak one. On the

right, the reaction function f .

Remark. The value p measures the intensity of the Allee effect:

• p = 0: no Allee effect (it is the logistic case),

• p� 1: less intense Allee effect,

• p� 1: more intense Allee effect.

Bistable model

The last model we present in this section is the bistable one. It is a classic example to
illustrate some strong Allee effect. The form of the reaction function f is of this type:

f (u) = ru
(

1− u

K

)
(u− ρ) , (r,K > 0, 0 < ρ < K) .

The parameter ρ(d) is a threshold demarcating extinction and persistence of the popula-
tion in the following mean: consider the solution of the ODE u′ = f (u) starting from
the initial datum u0 ≥ 0, then two cases are possible.

• If 0 ≤ u0 < ρ, then u tend to 0 as t tends to +∞, i.e. the population becomes
extinct.

• If u0 ≥ ρ, then u does not tend to 0 as t tends to +∞, i.e. the population persists.

The growth rate per capita is given by

τf (u) = r
(

1− u

K

)
(u− ρ)

which is maximal when u = (K + ρ) /2 > 0.

d Which is also a not asymptotically stable equilibrium point for u′ = f (u).

10



I. Reaction-Diffusion Equations in RN 2. Diffusion in RN

Figure F6 – Bistable model (strong Allee effect) : on the left, the growth rate per
capita which is not maximal when u = 0, i.e. there is an Allee effect; furthermore,

τf (0) < 0 whence the Allee effect is a strong one. On the right, the reaction function f .

I.2 Diffusion in RN

Now that we have presented non-spatial reaction models which simulate the population
size evolution, we approach the spatial problem of diffusion which modelize population
spreading in space. Let Ω be an open set of RN with N ∈ N?, X ∈ Ω and t ≥ 0; the
amount u (t,X) denotes from here the population density on place X at time t. We
shall consider in this whole section the diffusion equation otherwise called heat equation

∂tu = d∆u,

whose we begin by motivate the use.

I.2.1 Diffusion equation obtaining via random walks

An intuitive way to introduce diffusion phenomenon in population dynamics is through
random walks. We get place in the sequence in R2 but the entire reasoning is valid in
RN . Let us consider a single individual moving every step of time δT > 0 on a discrete
grid dipped in R2 whom distance between each pair of adjacent points equals δS > 0.
From a position (x, y) on the space grid at discrete time t ≥ 0, the individual owns two
degrees of freedom to move the distance δS until the next instant t+ δt: up/down and
left/right. The direction borrowed among the four possible is randomly chosen in an
independent way of the previous moves and all the directions have the same probability
to be taken – equals therefore 1/4. The situation has been summarized on figure (F7 )
below.

11



I. Reaction-Diffusion Equations in RN 2. Diffusion in RN

Figure F7 – Sketch of the individual motion – represented in blue – during the
random walk at times t and t+ δT . Starting from the state drawn in left, at time t,
there are four equiprobable places where the individual may be at the next discrete

time. Each possibility has thus a probability of 1/4.

Let now (x, y) on the space grid and a discrete time t ≥ 0. We note p (t, x, y) the
probability that the individual take place in (x, y) at time t. Thus, we have

p (t+ δT , x, y) = 1
4
(
p (t, x+ δS, y) + p (t, x− δS, y)

+ p (t, x, y + δS) + p (t, x, y − δS)
)

whence

p (t+ δT , x, y)− p (t, x, y)
δT

= 1
4δT

(
p (t, x+ δS, y)− 2p (t, x, y) + p (t, x− δS, y)

+ p (t, x, y + δS)− 2p (t, x, y) + p (t, x, y − δS)
)
.

Let d > 0, by assuming
δ2
S

4δT
= d ⇐⇒ 1

4δT
= d

δ2
S

,

we get

p (t+ δT , x, y)− p (t, x, y)
δT

= d

(
p (t, x+ δS, y)− 2p (t, x, y) + p (t, x− δS, y)

δ2
S

+ p (t, x, y + δS)− 2p (t, x, y) + p (t, x, y − δS)
δ2
S

)
.

Finally, one takes the limit (e)when δS and δT tend to 0 while preserving the ratio
d = δ2

S/ (4δT ); we obtain the heat equation we sought

∂tu = d∆u.
e As it is done in the book of Okubo et al. [12], section 5.3 pages 133-134.

12



I. Reaction-Diffusion Equations in RN 2. Diffusion in RN

I.2.2 Diffusion equation with initial datum

Coming back to the N -dimensional case, we consider now the Cauchy problem associated
to the diffusion equation{

∂tu = d∆u (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN ,
(I.2)

where u0 ∈ Lp
(
RN

)
with 1 ≤ p ≤ ∞.

Solving Cauchy problem by Fourier transform

Assume as just said above that N = 1 and p = 1, we are going to use Fourier transform
(f) to find a solution u (which we suppose existing) of (I.2). In the course of this
development, we will make some assumptions on the solution – these assumptions can
be verified later. Suppose first u ∈ L1 (R) in order to use the Fourier transform. Let for
(t, x) ∈ [0;∞)× R,

û (t, ξ) := û (t, • ) (ξ) .
By assuming that ∂xu and ∂xxu are in L1 (R) too, we can permute the Fourier transform
and the derivative and thus the first line of (I.2) becomes

∂tû = dF [∂xxu] .
Thanks to 5 (page 117) it comes that û satisfies the following ODE-Cauchy problem
where ξ states as a parameter:{

û′ (t, ξ) = −dξ2û (t, ξ) t ∈ (0;∞)
û (0, ξ) = û0 (ξ) . (I.3)

One solves the ODE of the latter problem, we get
û (t, ξ) = û0 (ξ) e−tdξ2

.

We use then 4 (page 117) with a = 1/ (4t):

û (t, ξ) = û0 (ξ) ·F
[

1√
4πdt

exp
(
− • 2

4dt

)]
︸ ︷︷ ︸

Let us call
that K(t, • ).

(ξ) .

One knows by 2 (page 117) that the Fourier transform of a convolution product equals
the pointwise product of the both Fourier transform, so

û (t, ξ) = F [K (t, • ) ∗ u0] (ξ) .
By finally exploiting the inversion formula 3 (page 117), we obtain

u (t, x) = [K (t, • ) ∗ u0] (x) ,
and it is now easy to check that our assumptions on u were correct.

f See the section “Fourier transform” (page 117) in the Toolbox part. The boxed numbers
1 , · · · , 5 refer to the five properties bearing on the Fourier transform properties.
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I. Reaction-Diffusion Equations in RN 2. Diffusion in RN

Heat kernel on RN

The function K defined above by

K (t, x) = 1√
4πdt

exp
(
− x2

4dt

)

is called the heat kernel on R. This function owns a few remarkable properties:

• K verifies the heat equation with “initial datum” δ0: the Dirac delta in 0.

• K is smooth in space for all time t positive, thereby the solution u inherits this
property by convolution, even if u was not continuous at initial time. One calls
this phenomenon the regularizing effect of the heat equation.

• K is positive for all time t positive. Again this property is also verified by the
solution u thanks to the convolution, even if u was compactly supported at initial
time. In the case where u0 is compactly supported, one says that the support of
u spreads at infinite speed.

Figure F8 – Snapshots of the the heat kernel on R at three different times.

Definition 9 (Heat kernel on RN)
Let N ∈ N?, one calls the heat kernel on RN the function K : R?

+ × RN → R defined
by the following

K (t,X) := 1
(4πdt)N/2

exp
(
−|X|

2

4dt

)
.

Figure F9 – Snapshots of the the heat kernel on R2 at three different times.

14



I. Reaction-Diffusion Equations in RN 2. Diffusion in RN

Remark. The heat kernel on RN is an approximate identity in the following sense:

• For all positive time t, K (t, • ) is positive.

• For all positive time t, ‖K (t, • )‖L1(RN ) = 1.

• For all δ > 0,
lim
t→0

∫
|X|≥δ

K (t,X) dX = 0.

The approximate identity is used for regularize by convolution.

Cauchy problem solution

One comes back to the Cauchy problem (I.2) of the diffusion equation in RN (N ∈ N∗)
provided with the initial datum u0 ∈ Lp

(
RN

)
(1 ≤ p ≤ ∞). This problem is actually

ill-posed because of the non-uniqueness of the solution. Indeed, take for example N = 1,
d = 1 and u0 ≡ 0, then the intuitive solution with such an initial datum should be
u ≡ 0 (no population at initial time implies no population at any time). However, one
can create another solution(g)which satisfies the same problem by posing f (t) := e−1/t2

and taking

u (t, x) :=


∞∑
n=0

f (n) (t)x2n

(2n)! if t > 0

0 otherwise.
Despite this, we can get rid of the “bad” solutions whether we suppose a priori that the
solution u does not increase too fast as |X| tends to∞. That is, by being more formal,

|u (t,X)| ≤ A exp
(
a |X|2

)
, ∀ (t,X) ∈ (0;∞)× RN (I.4)

where A and a are real positive numbers. In the sequel, we shall work under this
assumption in order to there only remains the one “physical solution”. Thereby by
“solution of (I.2)” we mean “solution of (I.2) which does not increase too fast”.

Hypothesis 2: u does not increase too fast in the sense given by (I.4).

g Find out by Tychonoff (1935).
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Theorem 10 (Solution of the diffusion Cauchy problem)
Let N ∈ N?, 1 ≤ p ≤ ∞, u0 ∈ Lp

(
RN

)
. Then there exists a unique solution of the

diffusion Cauchy problem (I.2) which is given by

u (t,X) =
{

[K (t, • ) ∗ u0] (X) if t > 0
u0 (X) otherwise.

This solution owns the following properties:

• Smoothness u ∈ C∞
(
(0;∞)× RN

)
.

• Integrability u (t, • ) ∈ Lp
(
RN

)
for all t ≥ 0 and

– if p 6=∞ then u (t, • ) Lp−→
t→0

u0,

– if p =∞ and u0 is moreover continuous on RN , then
· u ∈ C ([0;∞))× RN ; in other words, u is continuous in t = 0,
· u (t,X) ≤ ‖u0‖L∞ for all (t,X) ∈ [0;∞)× RN ,

– if p = 1 then
· ‖u (t, • )‖L1 = ‖u0‖L1 for all t ≥ 0,
· u (t,X) ≤ (4πdt)−N/2 ‖u0‖L1 for all (t,X) ∈ [0;∞)× RN .

• Comparison Let u and v be the solutions of (I.2) with the respective initial
datums u0 and v0,

– if u0 ≤ v0 on RN then u ≤ v on (0;∞)× RN ,
– if u0 ≤ v0 on RN and u0 6≡ v0, then u < v on (0;∞)× RN .

Remark. An important side of the diffusion equation is the mass conservation. The
purpose of diffusion equation use is to model the movement of individuals in space; thus
this tool should not change the population size – this role is played by the reaction
presented in the previous section. One calls the population mass at time t ≥ 0 the
amount M (t) := ‖u (t, • )‖L1(RN ). In population dynamics, it sounds acceptable to
take a population with a finite positive initial mass, that is M (0) def= ‖u0‖L1(RN ) <∞,
i.e. u0 ∈ L1

(
RN

)
. Then, thanks to the properties on u announced in the above

theorem, we get M (t) = M (0) for all t ≥ 0, i.e. population mass does not change
over time. Let us give a proof of this point for the one-dimensional case; we take some
stronger assumptions than announced in the theorem by supposing the initial datum
also non-negative and compactly supported – note that these additional guess are not
embarrassing in the context of population study.
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Proof (Mass conservation)
We work here in the space R. Assume as previously advertised that u0 ∈ L1 (R) is
a compactly supported non-negative function. We start by computing the two first
derivatives in space of the heat kernel, there comes

∂xK (t, x) = C1 (d, t)x exp
(
− x2

4dt

)

∂xxK (t, x) = C2 (d, t)
(

1− x2

2dt

)
exp

(
− x2

4dt

)
,

where C1 and C2 are two functions which do not depend on x. Let u be the solution of
(I.2) with initial datum u0 given by the theorem (10), one has

∂xxu (t, x) = ∂xx ([K (t, • ) ∗ u0] (x)) = [∂xx (K (t, • )) ∗ u0] (x) .

We check now whether ∂tu (t, • ) is in L1 (R) which will allow us to permute the partial
derivative in time and the integral. Let t > 0,∫

R
|∂tu (t, x)| dx =

∫
R
|d∂xxu (t, x)| dx

≤ d
∣∣∣∣∫

R

∫
R
∂xxK (t, x− y)u0 (y) dy dx

∣∣∣∣
= d

∣∣∣∣∣
∫
R

∫
supp(u)

∂xxK (t, x− y)u0 (y) dy dx
∣∣∣∣∣

then by Fubini’s theorem,∫
R
|∂tu (t, x)| dx ≤ d

∣∣∣∣∣
∫

supp(u)
u0 (y)

∫
R
∂xxK (t, x− y) dx dy

∣∣∣∣∣
≤ dmax (u0)

∣∣∣∣∣
∫

supp(u)

∫
R
∂xxK (t, x− y) dx dy

∣∣∣∣∣
= dmax (u0)

∣∣∣∣∣
∫

supp(u)
‖∂xxK (t, • )‖L1(R) dy

∣∣∣∣∣
= dmax (u0) ‖∂xxK (t, • )‖L1(R) |supp (u)|
<∞.

Therefore we have

∂t ‖u (t, • )‖L1(R) = ∂t

∫
R
u (t, • ) dx

=
∫
R
∂tu (t, • ) dx

= d
∫
R
∂xxu (t, • ) dx

= d [∂xu (t,+∞)− ∂xu (t,−∞)]
= 0.

17



I. Reaction-Diffusion Equations in RN 3. Reaction-Diffusion in RN

Thereby, ‖u (t, • )‖L1(R) is constant with respect to the time and we get thus

‖u (t, • )‖L1(R) = ‖u0‖L1(R)

for all t ≥ 0, that is what we were aiming for. 2

I.3 Reaction-Diffusion in RN

We now combine the reaction equation (non-linear ODE) with the diffusion one (linear
PDE) in RN which brings us to the reaction-diffusion equation in RN (non-linear PDE):

∂tu = d∆u+ f (u) .

This PDE models thus both the born/death of individuals in the population, and their
scattering in the space RN . One couples it with some initial condition u0 to get a
Cauchy problem and one takes the following assumptions:

Hypothesis 3: f (0) = 0.

Hypothesis 4: f ∈ C1 (R,R).

Hypothesis 5: u0 is bounded and uniformly continuous in RN .

We shall not take any further hypothesis in this section in which we give some general
results namely about existence, comparison principle and uniqueness.

I.3.1 Existence of a solution

We start by dealing with the existence of a solution for the reaction-diffusion Cauchy
problem we mentioned above which we recall here:{

∂tu = d∆u+ f (u) (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN .
(I.5)

Let us state a first result which guarantee the existence of a solution for (I.5) at
least until some time T depending on u0 and f .
Theorem 11 (Local well-posedness of the R-D Cauchy problem)
There exists some time T = T

(
‖u0‖L∞(RN ) ,Lip (f)

)
> 0 such that (I.5) owns a

solution u : [0;T ]× RN → R satisfying the Duhamel’s formula:

u (t,X) = [K (t, �) ∗ u0] (X) +
∫ t

0
[K (t− s, �) ∗ f (u (s, �))] (X) ds.

18
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Sketch of proof (Theorem 11)
Let τ > 0, we pose

X := C0
(
[0; τ ] ,BUC

(
RN

))
and we provide this space with the norm

‖u‖X := sup
0≤t≤τ

{
‖u (t, • )‖L∞(RN )

}
.

We are seeking (according to Duhamel’s principle) a solution (u : t 7→ u (t, • )) ∈ X for
(I.5) of this shape:

u (t, • ) = [K (t, �) ∗ u0] ( • ) +
∫ t

0
[K (t− s, �) ∗ f (u (s, �))] ( • ) ds.

Note that the unknown u is present in the both hands of the latter equality; the problem
lies therefore in finding a fixed point. First of all, remark that

• [0; τ ] is compact, and

•
(
BUC

(
RN

)
, ‖•‖L∞(RN )

)
is a Banach space

imply that (X , ‖•‖X ) is also a Banach space. Then one takes

Γ :=
{
u ∈ X / ∀t ∈ [0; τ) , ‖u (t, • )− [K (t, �) ∗ u0 (�)] ( • )‖L∞(RN ) ≤ ‖u0‖L∞(RN )

}
( X ,

that is Γ is a set of functions which stay “not too far” in the ‖•‖L∞ sense from the
homogeneous solution of (I.5) – i.e. the solution without reaction. One verifies that Γ
is closed in the Banach space (X , ‖•‖X ) and so Γ is complete for ‖•‖X . We pose then

Φ :


X −→ X

u 7−→ Φu :
{

[0; τ ] −→ BUC
(
RN

)
t 7−→ Φu (t, • ) ,

where

Φu (t, • ) := [K (t, �) ∗ u0] ( • ) +
∫ t

0
[K (t− s, �) ∗ f (u (s, �))] ( • ) ds,

and we proceed by using a fixed point theorem on the map Φ|Γ.

Theorem 12 (Banach-Picard fixed point)
Let Γ be a non-empty complete metric space and Φ a contraction on Γ, then Φ admits
a unique fixed point.

The end of the proof is therefore to check that the Banach-Picard fixed point
theorem assumptions are satisfied, then one has to show that:
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• Φ|Γ : Γ→ Γ, otherwise said, Im
(
Φ|Γ

)
= Γ. It comes out of the demonstration of

this point that τ has to be smaller or equal to

T := 1
2 Lip

I
(f) (I.6)

where I = [−2 ‖u0‖L∞ ; 2 ‖u0‖L∞ ].

• Φ|Γ is a contraction on Γ.

Observe that the Banach-Picard fixed point theorem (12) give us existence and unique-
ness of a solution for (I.5) but only in Γ which is strictly include in X ; therefore it
might happen that some other solutions exists in X , that’s why the local well-posedness
theorem 11 only gives the solution existence. Actually, we may pursue to show unique-
ness, but we shall later give another proof which will be an immediate corollary of
comparison principle. 2

Theorem 13 (Global well-posedness of the R-D Cauchy problem)
Suppose we know a priori there is someM > 0 such that |u| cannot exceedM whenever
it exists. Then the local solution of (I.5) guaranteed by the local well-posedness theorem
(11) is actually global, i.e. u : [0;∞)× RN → R.

Remark. The latter theorem give some sufficient condition to obtain a global solution.
Another one is to have f globally Lipschitz.

Sketch of proof (Theorem 13)
The main idea of the proof is to repeat the local well-posedness theorem (11) by taking
as initial datum for each new iteration, the solution at last time of the previous one.
Then by plugging the solutions successively we get the global solution we are aiming
for.

Figure F10 – Illustration of the construction of a global well-posedness.

The risk in doing this is that the lifetime of the local solutions may decrease faster than
the general term of some convergent series. Hence, we could not reach an infinite time.

Figure F11 – Illustration of one case which does not allow us to claim the global
solution existence.

20



I. Reaction-Diffusion Equations in RN 3. Reaction-Diffusion in RN

Here comes the hypothesis of boundedness of |u|. Let τ ≥ 0 be a time whom we know
u exists at it. We have,

Iτ := [−2 ‖u (τ, • )‖L∞ ; 2 ‖u (τ, • )‖L∞ ] ⊂ [−2M ; 2M ] := J.

Whence Lip
Iτ

(f) ≤ Lip
J

(f) and thus, by calling Tτ the lifetime of the local solution

starting at time τ and using (I.6) page 20,

Tτ
def= 1

2Lip
Iτ

(f) ≥
1

2Lip
J

(f) .

The rightmost hand of the latter is positive and independent of τ . Therefore, the risk
mentioned above can be excluded. 2

I.3.2 Comparison principle

Consider now the parabolic differential operator

Lu := ∂tu− d∆u− f (u)

with which the PDE ∂tu = d∆u+ f (u) becomes Lu = 0.

Definition 14 (Sub-solution)
Let u ∈ C1,2

(
[0;T )× RN ,R

)
, one says that u is a sub-solution for the operator L if

Lu ≤ 0

for all (t,X) ∈ [0;T )× RN .

Definition 15 (Super-solution)
Let u ∈ C1,2

(
[0;T )× RN ,R

)
, one says that u is a super-solution for the operator L if

Lu ≥ 0

for all (t,X) ∈ [0;T )× RN .

Remark. Note that u ∈ C1,2
(
[0;T )× RN ,R

)
is a solution for the operator L if and

only if u is both sub- and super-solution.
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Theorem 16 (Parabolic non-linear comparison principle)
Let u, u ∈ C1,2

(
[0;T )× RN ,R

)
and u be a solution of the Cauchy problem (I.5) which

we recall here using the L notation,{
Lu = 0 (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN .

Lower comparison [
u is a sub-solution

u (0, • ) ≤ u0

]
⇒ [ u ≤ u ] .

Upper comparison
[
u is a super-solution

u (0, • ) ≥ u0

]
⇒ [ u ≥ u ] .

Strict lower comparison
 u is a sub-solution

u (0, • ) ≤ u0
u (0, • ) 6≡ u0

⇒ [ u < u ] .

Strict upper comparison
 u is a super-solution

u (0, • ) ≥ u0
u (0, • ) 6≡ u0

⇒ [ u > u ] .

Corollary 17 (of theorem 16) (Uniqueness of the solution)
The local solution of the reaction-diffusion Cauchy problem (I.5) given by theorem 11
is unique.

Proof (Corollary 17)
Let u and ũ be two solutions of (I.5) starting from the same initial condition u0. It is
clear that

• Lũ = 0 ≤ 0

• ũ (0, • ) = u0 ≤ u0,

hence by comparison, ũ ≤ u. Then repeat the latter by inserting “≥” instead of “≤” to
get ũ ≥ u and thereby ũ ≡ u. 2
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Corollary 18 (of theorem 16) (About reaction equilibriums)
Let uE ∈ R be an equilibrium point for the reaction, i.e. f (uE) = 0 and u be the
solution of (I.5) starting from u0.

• If u0 ≡ uE, then u ≡ uE.

• If u0 ≤ uE, then u ≤ uE.

• If u0 ≥ uE, then u ≥ uE.

• If u0 ≤ uE but 6≡ uE, then u < uE.

• If u0 ≥ uE but 6≡ uE, then u > uE.

Proof (Corollary 17)
One just needs to see that

LuE = ∂tuE − d∆uE︸ ︷︷ ︸
=0 because uE∈R is

independant of t and X

− f (uE)︸ ︷︷ ︸
=0 because uE is

an equilibirum point

= 0.

The results are just then some consequences from the comparison principle. 2

Remark. By taking the carrying capacity K (see page 8) equals 1, each of the three
following models

• logistic,

• monostable degenerate,

• bistable

owns at least two equilibrium points at uE = 0 and uE = 1. Therefore, by taking the
initial datum u0 between these two points, we are a priori sure that the local solution
of the R-D Cauchy problem (I.5) stay bounded by between 0 and 1. One can then
apply the global well-posedness theorem 13: the local solution is actually global.

Corollary 19 (of theorem 16) (If u0 is sub-solution of its own PDE)
Always considering the R-D Cauchy problem (I.5), assume furthermore that u0 is a
sub-solution for L. Then for all given X ∈ RN , u ( • , X) is an increasing function.
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Proof (Corollary 17)
Let X be fixed in RN and t, τ ≥ 0, we pose

w (t,X) := u (t+ τ,X) .

The goal of this proof is showing that w ≥ u. We do this thanks to the comparison
principle:

• from one part, it is clear that w is a solution (and thus a super-solution) of L,

• from another part, since u0 is a sub-solution for L and u0 ≤ u0, we get by
comparison principle,

u0 (X) ≤ u (t,X) for all t ≥ 0.

Rewriting the latter with t = 0 + τ , it comes

u0 (X) ≤ u (0 + τ,X) def= w (0, X) =: w0 (X) .

Hence by applying the comparison principle a second time, one finally obtains

w (t,X) def= u (t+ τ,X) ≥ u (t,X) ∀t, τ ≥ 0,

that is u ( • , X) is an increasing function for all X ∈ RN . 2

Remark. Corollary 19 owns also an antagonistic version: if u0 is a super-solution for
L, then for all given X ∈ RN , u ( • , X) is an decreasing function. The proofs of the
both versions are exactly the same.

I.4 Fisher-KPP equation

We work in this section on the equations of the type Fisher-KPP (h) in RN which are a
particular case of reaction-diffusion equations whom the reaction function f satisfies
the following properties (and is thus said “of KPP type”):

• f ∈ C1 (R,R) ,

• f is non-negative,

• f (0) = f (1) = 0 so that 0 and 1 are some equilibrium points for the ODE
u′ = f (u),

h Both Fisher and “KPP” (abbreviation for “Kolmogorov, Petrovsky, Piskunov”) worked indepen-
dently on these equations.
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• f ′ (1) < 0 < f ′ (0) so that 0 is not asymptotically stable and 1 is asymptotically
stable,

• f satisfies the KPP-hypothesis (see page 8), that is

f (u) ≤ uf ′ (0) ∀u ≥ 0.

Remark. The logistic reaction (see page 7) taken with its carrying capacity K = 1,
f (u) = ru (1− u), is of KPP type.

Ones recalls that by taking an initial datum u0 between the both equilibriums 0
and 1, the R-D Cauchy problem{

∂tu = d∆u+ f (u) (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN (I.7)

owns a unique global solution u : [0;∞)× RN . Now we know the existence of such a
solution a legitimate question could be: “what happen when t becomes large ?” Indeed,
there is a competitive relation between the reaction term and the diffusion one.

• The reaction term f (u) tends to raise the population size, especially when the
latter is small; the PDE without diffusion

∂tu = f (u)

leads to a space invasion to the steady state u∞ ≡ 1 as soon as u0 > 0.

• The diffusion term d∆u spreads the individuals in space; the PDE without reaction

∂tu = d∆u

leads to the extinction of the population, that is u tends to the steady state
u∞ ≡ 0.

In the Fisher-KPP equations case, the reaction prevails: all positive perturbation
of the steady state u0 ≡ 0 leads to a space invasion toward u∞ ≡ 1. More precisely, we
have
Theorem 20 (Hair Trigger Effect)
For all initial datum 0 ≤ u0 ≤ 1 but 6≡ 0 and all R > 0, the solution u of the
Fisher-KPP Cauchy problem (I.7) satisfies

lim
t→∞

(
inf
|X|≤R

{u (t,X)}
)

= 1,

and thus, u (t, • ) tends to the constant function u∞ ≡ 1 locally uniformly in space as
t tends to +∞.

25



I. Reaction-Diffusion Equations in RN 4. Fisher-KPP equation in RN

Figure F12 – Simulation of the Hair Trigger Effect in R2 using the logistic reaction
f (u) = u (1− u) and starting from the compactly supported initial datum u0 :=

1B1/5
5 .

On the top of the figure, one sees four snapshots of the solution through the window[
−3

2 ; 3
2

]2
, and on the bottom we have represented the local min and max of this

solution in the same window.

Remark. About the proof of the theorem 20, it is sufficient to check that the result is
true for the logistic reaction ru (1− u). Indeed, let f be any reaction function of KPP
type, by taking r > 0 close enough to 0, we may have ru (1− u) < f (u) as one sees in
the figure (F13 ) above. Then the solution u of problem (I.7) using ru (1− u) instead
of f (u) is a sub-solution for ∂tu = d∆u+ f (u) and satisfies u0 ≤ u0; so by comparison
principle, we get u ≤ u and thanks to the hair trigger effect on u, u is driven to the
steady state u∞ ≡ 1 locally uniformly in space too.

Figure F13 – Illustration of what one means by “r > 0 close enough to 0” so that
ru (1− u) be bellow f (u) in the previous remark.
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Proof (Theorem 20) (HTE)
We therefore show the result for the logistic reaction function f (u) = ru (1− u) with
r > 0. Let us define the differential operator L by this way:

Lu := ∂tu− d∆u− ru (1− u) .

For R > 0, we denote by (λR, ϕR) the couple principal-(eigenvalue/eigenfunction) of
−d∆ with Dirichlet boundary condition in BR as defined in section 2 of the Toolbox
part page 118. We proceed like that:

1 One shows that for R large enough and ε > 0 small enough, the function

u0 (X) :=
{
εϕR (X) if X ∈ BR
0 otherwise

is a sub-solution for L.

We set u the solution of the PDE Lu = 0 starting from the initial datum u0.

2 Because u0 may be compactly supported, we wait for the u peeling off due to the
diffusion in order to (up to choosing ε smaller) slip u under u (t = 1, • ).

Thanks to 2 , we deduce by comparison principle that u ≥ u. The fact that
u0 is sub-solution of its own equation implies (see corollary 4 page 24) that u0
is increasing in time for X ∈ RN fixed. Therefore, since u is bounded by 1, it
converges pointwise to a stationary function p depending only on X and such that
0 < p (X) ≤ 1. Then parabolic estimates allows us to say that the convergence
pointwise of u toward p is actually locally uniform; thus we can “take the limit in
the equation” so that p satisfies the following elliptic PDE

−d∆p = rp (1− p) . (I.8)

3 It remains to show that the only positive solution of (I.8) smaller than 1 is p ≡ 1.

1 Let’s show that u0 is a sub-solution for L. We set ε ∈ (0; 1), for X inside BR, we
have

L (εϕR) = −dε∆ϕR − rεϕR (1− εϕR)
= εϕR (dλR − r (1− εϕR))

one had choosen ϕR such that ‖ϕR‖L∞ = 1, so

L (εϕR) ≤ ε (dλR − r (1− ε))
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since λR tends to 0 as R tends to +∞, we can choose R large enough so that λR is
smaller than r (1− ε) /2d; then there comes

L (εϕR) ≤ −rε (1− ε)
2 ≤ 0.

For X outside BR, one easy sees that L (0) = 0, thereby u0 is a sub-solution for L.
2 One knows that u0 is non-negative and non-zero. Since 0 is a sub solution we get,
thanks to strict comparison principle,

u (t,X) > 0, ∀ (t,X) ∈ (0;∞)× RN .

Then by taking t = 1 and choosing ε := min
(

1, inf
RN
{u (1, • )}

)
we get u ≤ u (1 + t, • ).

Then, as said in the beginning of the proof, u converges locally uniformly toward a
function p which satisfies

• 0 ≤ p ≤ 1,

• p 6≡ 0

• p satisfies the the elliptic PDE (I.8).

3 Let p be a positive solution of (I.8) smaller than 1 and suppose by contradiction
that p 6≡ 1. Then there exists some point X0 in RN where 0 < p (X0) < 1. With-
out loss generalities, one can assume that X0 is 0 (otherwise, take the translation
p̃ (X) := p (X +X0) which satisfies also (I.8)). Under this absurd hypothesis, one starts
by showing that εϕR is a strict sub-solution of

L̃p := −d∆p− rp (1− p)

for R large enough and ε small enough:

L̃ (εϕR) = εϕR (dλR − r (1− εϕR))
≤ ε (dλR − r (1− ε))

then by choosing ε ≤ p (0),

L̃ (εϕR) ≤ p (0) (dλR − r (1− p (0)))

and finally take R large enough to have λR ≤ r (1− p (0)) /2d (note that R does not
depend on ε),

L̃ (εϕR) ≤ −rp (0)

>0 thanks
to the hyp︷ ︸︸ ︷

(1− p (0))
2 < 0. (I.9)
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Now, because p is positive, the set

E := {ε > 0 / ∀X ∈ BR, εϕR (X) ≤ p (X)}

is non-empty and bounded by p (0) (since εϕR (0) = ε); so the amount ε∗ := sup E
exists. Let us call X∗ ∈ BR the contact point between ε∗ϕR and p. The figure (F14 )
bellow summarizes the situation.

Figure F14 – One increases ε until εϕR “touches” the function p.

We have, from one part, because ε∗ϕR − p reaches a maximum in X∗ ∈ BR,

∆ (ε∗ϕR − p) (X∗) ≤ 0,

from another part, by using (I.8), (I.9) that ε∗ϕR = p in X∗, we get

∆ (ε∗ϕR − p) (X∗) > 0

which is absurd, and thus p ≡ 1. 2

I.5 Weak Allee effect

We consider now a monostable degenerate reaction in the R-D Cauchy problem which
becomes (the carrying capacity K is taken equals 1){

∂tu = d∆u+ ru1+p (1− u) (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN (I.10)

where p is a real positive number and u0 is such that

• 0 ≤ u0 ≤ 1,

• u0 6≡ 0,

• u0 6≡ 1.
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Firstly, we shall use a quite different reaction by removing the term (1− u) and thus
work on the problem:{

∂tu = d∆u+ ru1+p (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN .
(I.11)

Note that u∞ = 1 is no longer an equilibrium state of the reaction, thereby it could
happen that the local solution of (I.11) given by theorem 11 is not global and blows up
in a finite time.

I.5.1 Fujita’s blow up

The question one sees here is knowing whether the solution u of (I.11) is global or blows
up in a finite time. There is actually a competition between the both terms d∆u and
ru1+p, in a relative same way as the remark we have done page 25:

• The reaction term ru1+p pull the solution to the blow-up in a finite time.

• The diffusion term d∆u tend to crush u on zero by spreading the individuals in
space.

An obvious case is the one where u0 is everywhere larger than some ε > 0. Indeed,
under this assumption we can easily make a sub-solution which push u to the blow-up:
take u = u (t) the solution of the ODE-Cauchy problem{

u′ (t) = u1+p (t) t ∈ (0;∞)
u (0) = ε.

One can show from one part that

u (t) =
( 1
εp
− pt

)−1/p

then blows up in a finite time, and from another part, u is below u thanks to the
comparison principle. Therefore, u blows up in a finite time too.

Now we have dealt with this case, we are interested in the sequence in compactly
supported initial datums.

Theorem 21 (Fujita, 1966)
Let define the Fujita’s exponent pF := 2/N . (a)

Soft Allee effect If 0 < p ≤ pF , then for all non-negative and non-zero initial
datum the solution of (I.11) blows up in a finite time.

Hard Allee effect If p > pF , then there exists some “small enough” non-negative
initial datums which give global solutions for (I.11) tending then to 0 as t tends to
+∞.

a Recall that N is the space dimension.
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Remark. Otherwise said, the Fujita’s theorem provides a threshold intensity of Allee
effect pF which splits systematic blow up due to a soft Allee effect (p ≤ pF ) from
non-systematic blow up due to an intense Allee effect (p > pF ).

Lemma 22 (On the decreasing speed of the heat solutions)
Let u0 be a non-negative and non-zero initial datum and denote u the solution of the
heat equation ∂tu = d∆u in RN . One controls the L∞ norm of u (t, • ) thanks to the
following equality:

‖u (t, • )‖L∞(RN ) ≤
C

(1 + t)N/2
.

Where C = C (‖u0‖L∞ , ‖u0‖L1) := max
((

1
2πd

)N/2
‖u0‖L1 , 2N/2 ‖u0‖L∞

)
.

Proof (Lemma 22)
First of all, it is easy to see that

‖u (t, • )‖L∞ ≤ min
(
‖u0‖L∞ ,

‖u0‖L1

(4πdt)N/2

)
. (F)

We split in two cases:
If t ≥ 1 then let us pose the amount k := 1/ (2πd); there comes,

4πdkt = 2t ≥ 1 + t

whence
kN/2 ‖u0‖L1

(1 + t)N/2
≥ kN/2 ‖u0‖L1

(4πdkt)N/2
= ‖u0‖L1

(4πdt)N/2
(F)
≥ ‖u (t, • )‖L∞ .

If t < 1 then 1 + t < 2 and so

2N/2

(1 + t)N/2
> 1,

whence
2N/2 ‖u0‖L∞
(1 + t)N/2

> ‖u0‖L∞
(F)
≥ ‖u (t, • )‖L∞ .

Thereby, by posing C equals to the max of the both numerators of each case, we finally
get the expected result:

‖u (t, • )‖L∞(RN ) ≤
C

(1 + t)N/2
. 2
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Proof (Theorem 21) (Fujita) Hard Allee effect
Let p be such that p > pF , we aim to build a global super-solution for

Lu := ∂tu− d∆u− u1+p

which tends to u∞ ≡ 0 as t tends to +∞. One tries for this a function of this shape:

u (t,X) := v (t,X) · g (t) ,

where v is the solution of the heat equation ∂tv = d∆v starting from u0 and g : [0;∞)→ R∗+
is to be determined. We start by impose g (0) = 1 so that u (0, • ) = u0 and therefore
the initial datum question is settled. We demand now that u is a super-solution for the
operator L. One has

Lu = ∂tu− d∆u− u1+p

= g∂tv + vg′ − gd∆v − g1+pv1+p

= g (∂tv − d∆v) + vg′ − g1+pv1+p

using then that v is solution of the heat equation,

Lu = vg′ − g1+pv1+p,

we thus get
Lu (t,X) = v (t,X)︸ ︷︷ ︸

≥0

(
g′ (t)− g1+p (t) vp (t,X)

)
︸ ︷︷ ︸

We would like this amount
non-negative too...

.

Recalling the L∞ control on v given in lemma 22, we look for a function g satisfying
the ordinary differential inequation

g′ (t) ≥ g1+p (t) Cp

(1 + t)Np/2
.

Solving the ODE Cauchy problem associated to the later starting from 1 at initial time,
one finds,

1
gp (t) =


1 + pCp

Np
2 − 1

 1
(1 + t)

Np
2 −1
− 1

 if p 6= 2
N
,

1− 2
N
C

2
N ln (1 + t) if p = 2

N

which should not be zero otherwise g would blow up in a finite time.

If p ≤ 2/N then 1/gp tends to −∞ as t tends to +∞. Therefore, because 1/gp starts
from 1, it hits 0 at some positive time, that is g blows up in finite time and we cannot
make a function g in this way.
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Figure F15 – Graph of 1/gp given with N = 2 and p = 0.5. The function g
systematically blows up in finite time.

If p > 2/N then

lim
t→+∞

1
gp (t) = 1− pCp

Np
2 − 1

which might be positive whether C = C (‖u0‖L∞ , ‖u0‖L1) were chosen “small enough”.
Therefore such a function g may be suitable for our super-solution u = vg.

Figure F16 – Graph of 1/gp given with N = 2 and p = 1.1. The value C = 0.1 is
“small enough” so that g does not blows up in finite time.

Consequently, if p > 2/N and u0 is taken such that ‖u0‖L∞ and ‖u0‖L1 are “small
enough”, we can take the function u as a super-solution for L. We thus get, thanks to
the comparison principle,

0 ≤ u (t,X) ≤ u (t,X) def= v (t,X)︸ ︷︷ ︸
decays to 0
like ct−N/2

·
bounded︷ ︸︸ ︷
g (t) t→+∞−→ 0,

that is the solution u is global and tends to the stationary state u∞ ≡ 0 at speed
ct−N/2. 2

Proof (Theorem 21) (Fujita) Soft Allee effect
We will only treat here the non-degenerate cases 0 < p < pF

def= 2/N . Let u0 be a
non-negative and non-zero initial datum, we are willing to prove that the solution u
starting from u0 blows up in finite time. To do this, assume by contradiction that u is
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a global solution of (I.11). We take the following function

f (t) :=
∫
RN
K (t,X)u0 (X) dX,

where K denotes the heat kernel in RN we have defined second section (see page 14).
We are going to surround f by two functions then we will show that the order relation
between the both bounds is conflicting once t becomes large.
Lower bound Let δ and ε be some real positive numbers such that δ1B(X0,ε) < u0,
where X0 is in supp (u0), like it is summarize on figure (F17 ).

Figure F17 – Illustration of the situation.

We multiply by K the previous inequality then integrate on RN to get the lower bound:

f (t) ≥ δ
∫
B(X0,ε)

K (t,X) dX = C

tN/2
. (I.12)

Upper bound For 0 ≤ s ≤ t, one poses

g (s) :=
∫
RN
K (t− s,X)u (s,X) dX.

Notice that g (0) = f (t). We have, reminding that K satisfies the heat equation
(parameters have been “forgotten” for better clarity):

g′ (s) =
∫
RN
−∆K · u+

(
∆u+ u1+p

)
·K dX

=
∫
RN
−∆K · u+ ∆u ·K dX︸ ︷︷ ︸

=0 thanks to an IBP

+
∫
RN
Ku1+p dX

=
∫
RN
Ku1+p dX

we use then the Jensen inequality thanks to the convexity of ( • )1+p and the fact that
‖K (t, • )‖L1 = 1; thus

g′ (s) ≥
(∫

RN
Ku

)1+p

= (g (s))1+p .
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Therefore g satisfies the ordinary differential inequation g′ ≥ g1+p. By separating the
variables, one reaches

1
gp (0) −

1
gp (t) ≥ pt.

Then, since g is positive, we get
1

gp (0) ≥ pt

whence one achieves the upper bound of f ,

f (t) = g (0) ≤ p1/p

t1/p
= C̃

t1/p
. (I.13)

As a conclusion, by gathering (I.12) and (I.13), we find the following bounds for
f :

C

tN/2
≤ f (t) ≤ C̃

t1/p
. (I.14)

However, since p < 2/N , one has 1/p > N/2 and so C̃/t1/p decays faster than C/tN/2.
Then the inequation (I.14) cannot be verified when t becomes large as you can see on
the figure (F18 ).

Figure F18 – Illustration of the contradiction given by (I.14): f should be both above
the red curve and bellow the blue one; it is the case for the small values of t but not for

the large one.

Thereby, the assumption under which the solution u is global (this hypothesis has
allowed us to create the function f) is wrong ans so u blows up in a finite time; that’s
what we were aiming for. 2

I.5.2 Hair Trigger Effect versus Extinction

Coming back to the whole problem (I.10) which we recall here,{
∂tu = d∆u+ ru1+p (1− u) (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN ,
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one knows, thanks to the comparison principle, that all the solutions starting from
an initial datum between the both stationary states 0 and 1 are global and remain
between these bounds. The question of the lifetime solution is thus settled. We are
now asking about the long time behaviour of the solutions. When we have presented
the Fisher-KPP equations (see page 24), and especially the logistic one whom we recall
the associated Cauchy problem bellow,{

∂tu = d∆u+ ru1+0 (1− u) (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN ,

there was Hair Trigger Effect, i.e. a systematic space invasion toward the carrying
capacity u∞ ≡ 1 locally uniformly in space, for each non-negative, smaller that 1 and
non-zero initial datum. Now we are inducing an Allee effect by changing the reaction
function ru1+0 (1− u) into ru1+p (1− u), one can ask whether this new R-D Cauchy
problem generate

• an Hair Trigger Effect, due to the vicinity of ru1+p (1− u) from the logistic
reaction in the case where p is near from 0,

• an extinction of the population, due to the hardness of the Allee effect in the case
where p is far from 0.

Actually, the study of the Fujita’s blow up we have done before is a good track to
try to answer the question. Indeed, the Fujita’s theorem give us a critical exponent pF
which splits systematic and non-systematic blow-up of the solutions starting from some
non-negative and non-zero initial datums.

• For a soft Allee effect (p ≤ pF ), there is an uplift of all the solutions toward the
blow up. Therefore one can imagine in this case that there is Hair Trigger Effect
once we add the barrier term (1− u).

• For an hard Allee effect (p > pF ), there exists some initial datums for which the
population becomes extinct and so one can think it is the same when one adds
(1− u) in the reaction term.

Both of these assumptions have been proved by Aronson and Weinberger in 1978 [2]

Theorem 23 (Aronson-Weinberger) (HTE vs. extinction) (1978)
Consider again the Fujita’s exponent pF := 2/N .

Soft Allee effect If 0 < p ≤ pF , then for all non-negative, smaller than 1 and
non-zero initial datum there is Hair Trigger Effect for the solution of (I.10); that is,
the solution tends toward u∞ ≡ 1 locally uniformly in space as t tends to +∞.
Hard Allee effect If p > pF , then there exists some “small enough” non-negative
initial datums for which the solution of (I.10) shall become extinct; that is, the solution
tends toward u∞ ≡ 0 locally uniformly in space as t tends to +∞.
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I. Reaction-Diffusion Equations in RN 5. Weak Allee effect

Figure F19 – Experiment results about the “hard Allee effect part” of the
Aronson-Weinberger theorem. Because N = 2, pF = 1. We had thus taken p = 3. One
compares here the long time evolution for two given initial datums. Like in figure

(F12 ) (page 26), there are on the top of each case four snapshots of the solution viewed
from the window

[
−3

2 ; 3
2

]2
, and on the bottom the local min and max of this solution

in the same window. In the first case, u0 is “large enough” for the Hair Trigger Effect
to happen, but in the second one u0 is “too small” to allow the population to persist.
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PART II

Fisher-KPP Reaction-Diffusion Equations on the
Field-Road space R2

+

In this whole part we shall present and discuss on the paper “The influence of a line
with fast diffusion on Fisher-KPP propagation” published in 2018 by Berestycki et al.
[4]. In the sequence, the terms “the authors” and “the article” refer then to the latter.
One reaches to model here a non-homogeneous diffusion in space and more precisely
some significant increase of the diffusion along certain axes. This will is motivated by a
number of ecological and biological observations whom we give some bellow.

• The first example given is the one of the “Black death” plague which occurs in
the middle of the 14th century. The front of this epidemic has actually been
accelerated because of the so called silk road which was a trade road connecting
many ports and cities in Asia, Africa and Europe. One can refer for instance to
[17] in order to get further details.
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II. Fisher-KPP on the Field-Road

Figure F20 – The Black death plague’s spread from 1346 to 1351. One clearly sees
that the epidemic follows the silk road drawn in red.

• We continue in the same vein by talking about a more contemporary problem:
COVID epidemic. It has been shown that the virus has a faster circulation along
highways and transportation infrastructures [8].

• We may also say a few words about the processionary caterpillar of the pine tree
and the “Asian tiger mosquito” which both have been found at some place that
we didn’t expect; this being again due to the human means of transport. For
this example one refers the reader to [14] for the processionary and to [3] for the
mosquito.

• In [9] one observes that rivers allow faster spreading of plants pathologies.

• And the last illustration we shall present here is the case of western Canadian
wolfs. Using a GPS tracking system, McKenzie et al. have reported in [11] that
wolfs use the seismic lines (a) in order to move faster: “wolves moved up to 2.8
times faster on linear features than in the forest”. This phenomenon disrupts the
local ecology equilibrium because it increase the chance of wolfs to find some preys
– one especially thinks about the caribou which constitute there an endangered
species.

Figure F21 – On left: satellite view of seismic lines near Zama City, Canada.
On right: seismic lines viewed from plane.

a These are clear, straight and man-made lines which cross the forest used to detect natural oil or
gas reserve. They are large of about 5m and long about a few kilometres, as one sees on figure (F21 ).
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Figure F22 – Photographs of a Canadian caribou (Rangifer tarandus) and Canadian
wolf (Canis lupus).

II.1 Presentation of the Field-Road model

One takes place in a 2-dimensional space(b) . In order to model some phenomenon of
diffusion acceleration on a line, which may allow us to describe the biological facts we
mentioned above, the authors propose to work on the half-plane domain R2

+ := R× R+
(c) which we shall call a Field-Road space. Let us take a single population living then
on that place; one distinguish there two disjoint locations:
The Field is the subset F := R× R∗+. Let v : [0;∞)× F → R denote the population
density in F , we assume a reaction-diffusion equation acts on v, with

• a small coefficient d for the diffusion, and

• a reaction function f of Fisher-KPP type.

This means that individuals can reproduce and slowly move on the Field.
The Road is the subset R := R×{0}. Let u : [0;∞)×R→ R denote the population
density in R, we suppose this time that only a diffusion equation acts on u, with

• a large diffusion coefficient D.

This means that individuals can only move fast on the Road.

Remarks.

1. The population we study is thus described by a couple of functions (u, v).

b Note one actually can work in N dimensions (N ≥ 2) like it is done in the paper. Because the
arguments in the N -dimensional cases are the same as those in the 2-dimensional one, we chose N = 2
for better readability.

c Take the half space RN−1 × R+ for the N -dimensional cases.
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2. Note that R is the frontier of F and that R2
+ = R ∪ F .

For the time being, the both functions u and v are not related. We now define some
laws of individuals exchanges between the Field and the Road. At every moment,

• a certain proportion of the Field individuals hitting the Road get in there and
the others rebound in the Field;

• some other proportion of the Road individuals leave the Road to get into the
Field and the others stay on the Road.

Under the assumptions we mentioned above, one can now draw up the following
PDE/Boundary conditions system:

∂tu−D∂xxu = νv (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v = f (v) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) = µu (t, x)− νv (t, x, 0) (t, x, 0) ∈ (0;∞)×R,

(II.1)

where µ and ν are real positive numbers related to the exchanges proportions between
Field and Road.

Figure F23 – Sketch of the Field-Road space in R2. Note the both x-axis should be
at the same place but we separated them for better readability. Note the frontier of the
Field plays an important role in the model as an exchange interface between the Field

and the Road.

The first thing we are going to do, is notice that taking ν = 1 does not entail
any loss of generality. Indeed if we rescale the time by a factor 1/ν, that is by taking
(ũ (t, x) , ṽ (t, x, y)) := (u (t/ν, x) , v (t/ν, x, y)), we obtain the equivalent to system (II.1)

∂tũ− D
ν
∂xxũ = ṽ (t, x, 0)− µ

ν
ũ (t, x, 0) ∈ (0;∞)×R

∂tṽ − d
ν
∆ṽ = f(ṽ)

ν
(t, x, y) ∈ (0;∞)× F

− d
ν
∂yṽ (t, x, 0) = µ

ν
ũ (t, x)− ṽ (t, x, 0) (t, x, 0) ∈ (0;∞)×R,

whence by recalling

41



II. Fisher-KPP on the Field-Road 2. Population mass conservation

• µ := µ/ν,

• D := D/ν,

• d := d/ν,

• f := f/ν,

one can get rid of ν which implicitly take place in the new parameters. Thereby, we
now work on

∂tu−D∂xxu = v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v = f (v) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) = µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

(II.2)

II.2 Population mass conservation

As mentioned in first part (see page 16), a realistic R-D model should preserve the
quantity of individuals whether there is no reaction – i.e. f ≡ 0. We had already shown
it in the RN case in first part, but we have to do it again here because it is a priori not
sure that all individuals leaving the Field get in the Road and vice versa; otherwise
said, some individuals could be “lost” during the exchanges, so we have to check that
there is no “individuals leakage” in the model. Fortunately, everything is going fine:

Proposition 24 (Population mass conservation on the Field-Road)
Assume f ≡ 0 in problem (II.2). If (u, v) is a solution of this problem such that the
both functions u and v are non-negatives and decay in space, for all t ≥ 0, faster than
some exponential functions(a) , then the total population described by the amount

M (t) := ‖u (t, • )‖L1(R) + ‖v (t, • , • )‖L1(R×R∗+)

remains constant with respect to the time. In an equivalent way, we have
M (t) = M (0) for all t > 0.

a It is actually sufficient, thanks to parabolic estimates, to suppose this property of exponential
decadence true at the initial time to recover it for all t ≥ 0.

Proof (Proposition 24)
For T > 0, we assess the population variation between the instants 0 and T , on the Road
from one part and in the Field from another part. By summing these both quantities,
we reach the total population variation in the whole space. Then one finds out that the
population which has been disappeared on the Road until the instant T has actually
been gained in the Field and vice versa. In other words, the exchanges between the
Field and the Road compensate each other and we finally get the expected result.
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Population variation on the Road between times 0 and T

‖u (T, • )‖L1(R) − ‖u (0, • )‖L1(R) =
∫ +∞

−∞
u (T, x)− u (0, x) dx

=
∫ +∞

−∞

∫ T

0
∂tu (t, x) dt dx

by using Fubini’s theorem,

=
∫ T

0

∫ +∞

−∞
∂tu (t, x) dx dt

by using first equation in (II.2),

=
∫ T

0

∫ +∞

−∞
v (t, x, 0)− µu (t, x) +D∂xxu (t, x) dx dt

=
∫ T

0

[ ∫ +∞

−∞
v (t, x, 0)− µu (t, x) dx

+D (∂xu (t,+∞)− ∂xu (t,−∞))︸ ︷︷ ︸
= 0 thanks to the fast decay of u

]
dt

‖u (T, • )‖L1(R) − ‖u (0, • )‖L1(R) =
∫ T

0

∫ +∞

−∞
v (t, x, 0)− µu (t, x) dx dt.

Population variation on the Field between times 0 and T

‖v (T, • , • )‖L1(R×R∗+) − ‖v (0, • , • )‖L1(R×R∗+) =
∫ T

0

∫
R×R∗+

∂tv (t, x, y) dxdy dt

=
∫ T

0

∫
R×R∗+

d∆v (t, x, y) + f (v (t, x, y))︸ ︷︷ ︸
= 0

dxdy dt

integrate then the latter by part using Green’s formula,

‖v (T, • , • )‖L1(R×R∗+) − ‖v (0, • , • )‖L1(R×R∗+) =
∫ T

0

∫ +∞

−∞
−d∂yv (t, x, 0) dx dt

finaly by using third equation in (II.2),

‖v (T, • , • )‖L1(R×R∗+) − ‖v (0, • , • )‖L1(R×R∗+) =
∫ T

0

∫ +∞

−∞
µu (t, x)− v (t, x, 0) dx dt.

We can now observe that the population variation in the Field is opposed to the
one on the Road. Thereby, by summing, there comes

‖u (T, • )‖L1(R) − ‖u (0, • )‖L1(R) + ‖v (T, • , • )‖L1(R×R∗+) − ‖v (0, • , • )‖L1(R×R∗+) = 0,
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whence

‖u (T, • )‖L1(R) + ‖v (T, • , • )‖L1(R×R∗+) = ‖u (0, • )‖L1(R) ‖v (0, • , • )‖L1(R×R∗+) ,

that is M (T ) = M (0). 2

II.3 A few words about the µ parameter

One discuss here about the signification of the µ parameter that is related to migrations
between the Field and the Road. This amount µ should not be interpreted as a migratory
intensity but rather as an attractive equilibrium ratio between population mass on the
frontier of the Field and on the Road. This equilibrium yields for

‖v (t, • , 0)‖L1(R)

‖u (t, • )‖L1(R)
= µ,

and whether that equality may not achieved, ‖v (t, • , 0)‖L1 and ‖u (t, • )‖L1 evolve in
order to get their ratio closer to µ.

Figure F24 – Illustration of the migratory dominances between the Field and the
Road depending on the position of ‖v(t,·,0)‖L1

‖u(t,·)‖L1
with respect to µ.

Therefore population mass evolve toward the ratio Road/Field-frontier “one for µ”
and we thus have the three following possible cases:

• µ = 1 means a neutral equilibrium “one for one”,

• µ > 1 means an equilibrium promoting the Field,

• µ < 1 means an equilibrium in favour of the Road.

All which have been clamed from the beginning of section II.3 is now going to be
verified. Let t be a real non-negative number, we compute at the instant t the time
derivative of the population mass on the Road, that also is the population flow from
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the Field to the Road because all variations of the population mass on the Road is due
to the migrations between the Field and the Road.

∂t
(
‖u (t, • )‖L1(R)

)
= ∂t

(∫ +∞

−∞
u (t, x) dx

)
=
∫ +∞

−∞
∂tu (t, x) dx

using then first line of (II.2),

∂t
(
‖u (t, • )‖L1(R)

)
=
∫ +∞

−∞
v (t, x, 0)− µu (t, x) +D∂xxu (t, x) dx

=
∫ +∞

−∞
v (t, x, 0)− µu (t, x) dx+D (∂xu (t,+∞)− ∂xu (t,−∞))︸ ︷︷ ︸

= 0 under assumptions of proposition 24.

= ‖v (t, • , 0)‖L1(R) − µ ‖u (t, • )‖L1(R) .

Whence the exchanges of individuals are lead by the following:

• If ‖v(t,·,0)‖L1
‖u(t,·)‖L1

= µ then the individuals flow from Field to Road is zeros that is there
is no migration between the Field and the Road.

• If ‖v(t,·,0)‖L1
‖u(t,·)‖L1

> µ then the individuals flow from Field to Road is positive that is
the individuals mainly migrate from the Field to the Road.

• If ‖v(t,·,0)‖L1
‖u(t,·)‖L1

< µ then the individuals flow from Field to Road is negative that is
the individuals mainly migrate from the Road to the Field.

II.4 Cauchy problem: Existence, uniqueness, CP

One deals in this section with the problem (II.2) provided with the initial datum{
u (0, • ) = u0 in R,
v (0, • , • ) = v0 in R× R∗+,

(II.3)

such that u0 and v0 are each non-negative, continuous and bounded by 1.

Theorem 25 (Well-posedness of the R-D Cauchy problem)
Problem (II.2) combined with the initial datum (II.3) admits a unique solution (u, v)
which share the same properties as the one we set on (u0, v0), namely u and v are each
non-negative, continuous and bounded by 1.

Remark. Note we do not demand that the extension of v0 by u0 on the Road is
continuous. Therefore, v extended by u on the Road has no reason to be continuous
either.
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We shall admit in the sequence the existence part of theorem 25. The uniqueness
part derives from the comparison principle which we will announce after these few
definitions:
Definition 26 (Sub-solution)
Let u ∈ C1,2 ([0;T )× R,R) and v ∈ C1,2

(
[0;T )× R× R∗+,R

)
, on says that (u, v) is a

sub-solution for the problem (II.2) if
∂tu−D∂xxu ≤ v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v ≤ f (v) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) ≤ µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

Definition 27 (Super-solution)
Let u ∈ C1,2 ([0;T )× R,R) and v ∈ C1,2

(
[0;T )× R× R∗+,R

)
, on says that (u, v) is a

super-solution for the problem (II.2) if
∂tu−D∂xxu ≥ v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v ≥ f (v) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) ≥ µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

Theorem 28 (Parabolic non-linear comparison principle)
Let us consider

• (u, v) a sub-solution for (II.2) bounded from above,

• (u, v) a super-solution for (II.2) bounded from bellow,

satisfying (u, v) ≤ (u, v), when t = 0, then

• either (u, v) < (u, v) for all t ∈ (0; +∞),

• or there exists some T > 0 such that (u, v) = (u, v) in [0;T ].

One can by now use the comparison principle to build the demonstration of the
uniqueness part of theorem 25.

Proof (Theorem 25)(Well-posedness)(Uniqueness part)
Let (u, v) and (ũ, ṽ) be two solutions of (II.2) starting from the same initial datum
(u0, v0). This proof shall be completed when it will have been shown that (u, v) ≡ (ũ, ṽ).
To do this, assume by contradiction that it is not the case. Then the set

T := {T ≥ 0 / (u, v) = (ũ, ṽ) for all t ∈ [0;T ]}

is bounded (due to the absurd hypothesis) and not empty (0 is in). We are then allowed
to set

Tmax := sup T < +∞.
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We show now two things about Tmax:
1 Tmax is positive.
Indeed, assume that Tmax = 0, by applying the comparison principle with (u, v) = (u, v)
and (u, v) = (ũ, ṽ), the only possibility is that (u, v) < (ũ, ṽ) for all time. Repeat
that by switching (u, v) and (u, v) we get (u, v) > (ũ, ṽ) for all time which is obviously
conflicting with the previous inequality. Thereby, Tmax > 0.
2 (u, v) = (ũ, ṽ) at Tmax.
To see that, take a maximizing sequence (Tn)n∈N ⊂ T that converges up to Tmax.
Because for all n ∈ N, (u, v)− (ũ, ṽ) = (0, 0) at Tn and (u, v)− (ũ, ṽ) is continuous with
respect to the time, one finds out that (u, v) = (ũ, ṽ) at Tmax.

It is now easy to conclude: like 1 has been proved, by applying twice the
comparison principle for (u, v) and (ũ, ṽ) starting at time Tmax, the maximality of Tmax
forces us to conclude both (u, v) < (ũ, ṽ) and (u, v) > (ũ, ṽ) for all time larger that
Tmax. That’s absurd. 2

Theorem 28 can be extended to “generalised sub- and super-solutions” which are
respectively defined by the sup of sub-solutions and the inf of super-solutions by the
following way.

Proposition 29 (Generalised parabolic non-linear comparison principle)
One considers two parabolic and open domains E ⊂ (0;∞)×R and F ⊂ (0;∞)× F ,
and (u1, v1) and (u2, v2) two sub-solutions for (II.2) bounded from above and satisfying{

u1 ≤ u2 on (∂E) ∩ ((0;∞)×R)
v1 ≤ v2 on (∂F ) ∩ ((0;∞)× F ) .

If the functions u and v defined by

u (t, x) :=
{

max (u1 (t, x) , u2 (t, x)) if (t, x) ∈ E
u2 (t, x) otherwise,

v (t, x, y) :=
{

max (v1 (t, x, y) , v2 (t, x, y)) if (t, x, y) ∈ F
v2 (t, x, y) otherwise,

satisfy
[u (t, x) > u2 (t, x)]⇒ [v (t, x, 0) ≤ v1 (t, x, 0)]
[v (t, x, 0) > v2 (t, x, 0)]⇒ [u (t, x) ≤ u1 (t, x)] , (II.4)

then for all bounded from bellow super-solution (u, v) for (II.2) such that (u, v) ≤ (u, v)
at time t = 0, that inequality spreads on all positive time, that is (u, v) ≤ (u, v) for
all t ≥ 0.

47



II. Fisher-KPP on the Field-Road 5. Long time behaviour

Remark. For parabolic equations in RN the comparison principle always holds for
generalised sub-solution (i.e. the sup of sub-solutions) and super-solutions (i.e. the
inf of super-solutions). For the Field-Road model, one actually needs the extra as-
sumption (II.4) to get that true. Note that whether (u, v) is a compactly supported
sub-solution, the zero-extension of (u, v) satisfies assumption (II.4) with (u1, v1) := (u, v)
and (u2, v2) :≡ (0, 0).

II.5 Long time behaviour

We are interested in this section in the future of solutions of the Cauchy problem
(II.2)–(II.3) in long time. To deal with this, we are looking for stationary solutions of
system (II.2); we work so on the following timeless problem

−D∂xxU = V (x, 0)− µU (x, 0) ∈ R
−d∆V = f (V ) (x, y) ∈ F
−d∂yV (x, 0) = µU (x)− V (x, 0) (x, 0) ∈ R.

(II.5)

Proposition 30 (Stationary solutions)
There are only two bounded and non-negative solutions of (II.5) which are:

(U, V ) ≡ (0, 0) and (U, V ) ≡
(

1
µ
, 1
)
.

Remark. According to section II.3, it is not surprising to see that stationary solutions
of system (II.2) satisfy both their mass ratio Field-frontier/Road is at the equilibrium
µ.

Lemma 31
Assume that (U, V ) is a bounded positive solution of (II.5), then for all r > 0,

inf
R×[r;+∞)

V > 0.

Proof (Lemma 31)
As in the Hair Trigger Effect proof (see page 27), we denote by (λ, ϕ) the couple
principal-(eigenvalue/eigenfunction) of −d∆ with Dirichlet boundary condition in BR
as defined in section 2 of the Toolbox part page 118. Take R > 0 large enough so that

λ <
f ′ (0)

2d .
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Then, by letting ε > 0,

−d∆ (εϕ)− f (εϕ) = dελϕ− f (εϕ)

= εϕ

(
dλ− f (εϕ)

εϕ

)

< εϕ

(
f ′ (0)

2 − f (εϕ− f (0))
εϕ− 0

)
.

Yet, f ′(0)
2 −

f(εϕ−f(0))
εϕ−0 tends to −f ′(0)

2 < 0 as ε tends to 0; whence for ε0 close enough to
0, we have for all 0 < ε ≤ ε0,

−d∆ (εϕ)− f (εϕ) < εϕ︸︷︷︸
>0

(
f ′ (0)

2 − f (εϕ− f (0))
εϕ− 0

)
︸ ︷︷ ︸

<0

< 0. (II.6)

Claim. For all (x0, y0) ∈ R× (R; +∞) and for all (x, y) ∈ BR (x0, y0),

V (x, y) ≥ ε0ϕ (x− x0, y − y0) .

Let’s prove that claim: we assume by contradiction that V < ε0ϕ ( • − x0, • − y0)
somewhere in BR (x0, y0). Then as V is positive in F , by taking ε smaller, one may
have ε0ϕ ( • − x0, • − y0) < V in BR (x0, y0). Hence the set

E := {ε > 0 / ∀ (x, y) ∈ BR (x0, y0) , εϕ (x− x0, y − y0) < V (x, y)}

is non-empty and bounded from above by ε0 thanks to the absurd hypothesis. So
one can take ε∗ := sup ε < ε0. Let us call (x∗, y∗) the contact point between V and
ε∗ϕ ( • − x0, • − y0) which cannot belong to the frontier ∂BR (x0, y0) because ϕ is zero on
that set. In such a contact point, V − ε∗ϕ ( • − x0, • − y0) achieves a not-on-the-frontier
local minimum therefore

d∆ (V (x∗, y∗)− ε∗ϕ (x∗ − x0, y
∗ − y0)) ≥ 0. (II.7)

Furthermore,

d∆ (V − ε∗ϕ ( • − x0, • − y0)) = d∆V − d∆ (ε∗ϕ ( • − x0, • − y0))

and we use (II.6) because ε∗ ≤ ε0 (thanks to the absurd hypothesis),

d∆ (V − ε∗ϕ ( • − x0, • − y0)) < f (ε∗ϕ ( • − x0, • − y0))− f (V ) .

Finally, by recalling that V and ϕ ( • − x0, • − y0) have same value at (x∗, y∗), we obtain
by assessing the latter inequality at this point,

d∆ (V (x∗, y∗)− ε∗ϕ (x∗ − x0, y
∗ − y0)) < 0. (II.8)

Thereby (II.7) and (II.8) make it absurd and so prove the claim. 2 (claim)
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The claim is going to allow us to achieve the proof of the lemma. Let r > 0,

• if r > R then thanks to the claim and because ϕ (0, 0) = 1, we get for all
(x, y) ∈ R× [r; +∞), V (x, y) ≥ ε0 > 0;

Figure F25 – Illustration of the most simple case
r > R. Because the claim is valid on the whole
yellow half plane, one can put (x, y) anywhere we
want above the line y = r.

• if 0 < r ≤ R, then from one part, using the same argument as bellow, for all
(x, y) ∈ R× (R; +∞), V (x, y) ≥ ε0 > 0. From another part, thanks again to the
claim, for all (x, y) ∈ R× (r;R], V (x, y) ≥ ε0ϕ

(
0, r2 −R

)
> 0.

Figure F26 – Illustration of the second case 0 < r ≤ R. The left part uses the
same arguments as the first case. The right part uses the fact that ϕ is positive,

radial and decays with respect to the radius of its argument.

To conclude we have shown that

inf
R×[r;+∞)

V ≥ ε0 > 0 if r > R,

and
inf

R×[r;+∞)
V ≥ ε0ϕ

(
0, r2 −R

)
> 0 otherwise.

So the result is established. 2
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Proof (Proposition 30) (Stationary solutions)
Let (U, V ) be a bounded and non-negative solution of problem (II.5). We are seeking
to show that (U, V ) ≡ (0, 0) or (U, V ) ≡ (1/µ, 1). By looking at third line of (II.5), one
sees that it is sufficient to prove that V ≡ 0 or V ≡ 1. That sufficient condition is again
not surprising because of the equilibrium ratio between the mass of the population on
the Field’s frontier and on the Road. We reason according to whether V is positive or
not.

• If V is not positive, then because V is assumed non-negative there exists some
(x0, y0) ∈ F such that V (x0, y0) = 0. Then by applying the strong elliptic
maximum principle (see page 119) to L := −d∆, as −V attains an interior
maximum at (x0, y0) and verifies L (−V ) = −f (V ) ≤ 0, we get V ≡ 0 on F . In
that way one recovers the first solution we were aiming for.

• If V is positive, we therefore have to show that V ≡ 1 to achieve the proof.
Let then us suppose V > 0, we proceed in two steps:
1 Show that V ≥ 1.
To do this, assume by contradiction that m := inf

F
V < 1. Note because V is assumed

positive, one necessary has m ≥ 0. Take a sequence of points (xn, yn)n∈N ⊂ F such that

lim
n→∞

V (xn, yn) = m.

There are two possible cases depending on whether m is obtained in the interior of the
Field or on its frontier:
First case (yn) tends to 0. We set for n ∈ N,

Un := U (x+ xn) and Vn := V (x+ xn, y) .

Thanks to standard elliptic estimates, both sequences (Un) and (Vn) converge respectively
(up to sub-sequences and locally uniformly) toward some functions U∼ and V∼ such that(
U
∼
, V
∼) satisfies problem (II.5). We have then according to second line of that problem,

∆V∼ = −f
(
V
∼)

/d. (II.9)

Furthermore,

V
∼ (0, 0) = lim

n→∞
Vn (0, 0)

= lim
n→∞

V (0 + xn, 0)

= V
(

lim
n→∞

xn, 0
)

= V
(

lim
n→∞

xn, lim
n→∞

yn

)
= lim

n→∞
V (xn, yn)

= m,
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and as V∼ is continuous, there exists some vicinity of (0, 0) in R2
+ rated V in which

0 ≤ V
∼
' m < 1. Thus, because f is non-negative between 0 and 1, one obtains that

f
(
V
∼) is non-negative in V and so with (II.9), ∆V∼ ≤ 0. One can now apply the elliptic

Hopf’s lemma (see page 119) with L := −∆: as −V∼ attains a maximum at (0, 0) that
is on the frontier of V and L

(
−V
∼)
≤ 0 in V , we get

• either V∼ ≡ m in V ,

• or −∂yV
∼ (0, 0) < 0.

First situation can be discarded, indeed, whether it would be true, we would have, by
using lemma 31 (with r small enough), that m = inf

R×[r;+∞)
V
∼
> 0. Whence, we be would

getting the following contradiction

0 = ∆V∼ (II.9)= −f (m)
d

< 0 (because 0 < m < 1) .

So we should be in the second situation given by Hopf’s lemma that is −∂yV
∼ (0, 0) < 0.

Using that in third line of problem (II.5), one reaches

µU
∼ (x)− V∼ (x, 0) < 0.

Assess that for x = 0,
µU
∼ (0)−m < 0.

Hence
inf
R
U = inf

R
U
∼
< U
∼ (0) < m

µ
. (II.10)

We set now a minimizing sequence (x̂n)n∈N ⊂ R that is lim
n→∞

U (x̂n) = inf
R
U and take

for n ∈ N, Ûn (x) := U (x+ x̂n). Another time, the standard elliptic estimates assert
that

(
Ûn

)
converges (up to sub-sequence and locally uniformly) toward a function U

a

such that U
a

(0) = inf
R
U
a

= inf
R
U , and

(
U
a
, V

)
satisfies system (II.5). So by using first

line of that system,
−D∂xxU

a
= V (x, 0)− µU

a
,

and by assessing that in x = 0,

−D∂xxU
a

(0) = V (0, 0)− µU
a

(0)
= m− µ inf

R
U

(II.10)
> 0.

Furthermore, by minimality of U
a

in 0, we obtain −D∂xxU
a

(0) ≤ 0 so that’s absurd.
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Second case (yn) does not tends to 0.
Otherwise said, there exists a sub-sequence (ynk)k∈N and r > 0 such that ynk > r > 0
for all k ∈ N. Thanks to lemma 31, and as (xnk , ynk) ∈ R× [r; +∞), so it is easy to see
that

V (xnk , ynk) ≥ inf
R×[r;+∞)

V > 0.

Whence by taking the limit as k tends to +∞, we get that m > 0. We now pose for
k ∈ N,

V nk (x, y) := V (x+ xnk , y + ynk) .
Using the standard elliptic estimates, we obtain that

(
V nk

)
converges (up to sub-

sequence and locally uniformly) toward a function V
`

such that V
`

(0, 0) = m and(
U, V
`
)

satisfies system (II.5). The function V
`

is continuous so in a small-enough

centred ball Bρ (with 0 < ρ < r), we have

0 < V
`
' V
`

(0, 0) = m < 1.

If we write second line of system (II.5), we have

−d∆V
`

= f

(
V
`
)

and because m is strictly between 0 and 1 in Bρ, −d∆V
`
> 0. Yet V

`
attains an interior

minimum at (0, 0) so we also have in this point −d∆V
`
≤ 0; that’s absurd.

Thereby in both cases, V ≥ 1. 2 (1)

2 Show that V ≤ 1.
That part of the proof follows the same arguments as in 1 ; we thus take the same
notations and give less details. Assume by contradiction that M := sup

F
V > 1. One

takes a sequence (xn, yn)n∈N ⊂ F such that

lim
n→∞

V (xn, yn) = M.

Again, there are two possible cases depending on whether M is obtained in the interior
of the Field or on its frontier.
First case (yn) tends to 0. We set for n ∈ N,

Un := U (x+ xn) and Vn := V (x+ xn, y) .

Thanks to standard elliptic estimates, both sequences (Un) and (Vn) converge respectively
(up to sub-sequences and locally uniformly) toward some functions U∼ and V∼ such that(
U
∼
, V
∼) satisfies problem (II.5). We furthermore have

∆V∼ = −f
(
V
∼)

/d, (II.11)
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and V∼ (0, 0) = M . Hopf’s lemma give us, in a same vein as (II.10)

sup
R
U = sup

R
U
∼
> U
∼ (0) > M

µ
. (II.12)

We set now a maximizing sequence (x̂n)n∈N ⊂ R that is lim
n→∞

U (x̂n) = sup
R
U and take

for n ∈ N, Ûn (x) := U (x+ x̂n). Another, time the standard elliptic estimates assert
that

(
Ûn

)
converges (up to sub-sequence and locally uniformly) toward a function U

a

such that U
a

(0) = sup
R
U
a

= sup
R
U , and

(
U
a
, V

)
satisfies system (II.5). So by using first

line of that system,
−D∂xxU

a
= V (x, 0)− µU

a
,

and by assessing that in x = 0,

−D∂xxU
a

(0) = V (0, 0)− µU
a

(0)
= M − µ sup

R
U

(II.12)
< 0.

Furthermore, by maximality of U
a

in 0, we obtain −D∂xxU
a

(0) ≥ 0 so that’s absurd.
Second case (yn) does not tends to 0.
Otherwise said, there exists a sub-sequence (ynk)k∈N and r > 0 such that ynk > r > 0
for all k ∈ N. We now pose for k ∈ N,

V nk (x, y) := V (x+ xnk , y + ynk) .

Using the standard elliptic estimates, we obtain that
(
V nk

)
converges (up to sub-

sequence and locally uniformly) toward a function V
`

such that V
`

(0, 0) = M and(
U, V
`
)

satisfies system (II.5). The function V
`

is continuous so in a small-enough

centred ball Bρ (with 0 < ρ < r), we have

0 < V
`
' V
`

(0, 0) = M > 1.
If we write second line of system (II.5), we have

−d∆V
`

= f

(
V
`
)

and because M is larger than 1 in Bρ, −d∆V
`
< 0. Yet V

`
attains an interior maximum

at (0, 0) so we also have in this point −d∆V
`
≥ 0; that’s absurd.

Thereby in both cases, V ≤ 1. 2 (2)

Consequently, V ≡ 1. 2
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One comes back to the initial temporal problem (II.2), proposition 30 actually
allows us to show the following invasion result:

Theorem 32 (Hair Trigger Effect on the Field-Road)
For all bounded initial datum (u0, v0) ≥ (0, 0) but 6≡ (0, 0), the solution (u, v) of the
Field-Road Fisher-KPP Cauchy problem (II.2)–(II.3) satisfies

lim
t→∞

(u (t, x) , v (t, x, y)) =
(

1
µ
, 1
)

locally uniformly in the whole half plane R2
+.

Figure F27 – Simulation of the Hair Trigger Effect on the Field-Road using the
logistic reaction f (u) = u (1− u), D = 1, d = 0.01, µ = 4 and starting from the

compactly supported initial datum (u0, v0) :=
(

2
51B 1

5
(0, 3

8), 0
)
. On the top of the figure,

one sees four snapshots of the Field solution v through the window
[
−3

2 ; 3
2

]2
, and on

55



II. Fisher-KPP on the Field-Road 5. Long time behaviour

the bottom the local min and max of the solution (u, v) have been represented in that
same window. Observe how population density tends toward (1/µ, 1) locally and

uniformly in space.

Proof (32) (Hair Trigger Effect on the Field-Road)
The main idea of this proof is to create two solutions (u, v) and (u, v) of (II.2), the first
increasing in time at fixed place and the second decreasing in time at fixed place; we
show then these functions tends toward (1/µ, 1) locally and uniformly in space as t
tends to ∞; and finally, one puts our solution (u, v) between these two bounds to get
the result.

Starting as for the proof of lemma 31 (page 48), we denote by (λ, ϕ) the couple
principal-(eigenvalue/eigenfunction) of −d∆ with Dirichlet boundary condition in BR
as defined in section 2 of the Toolbox part page 118. Take R > 0 large enough so that

λ <
f ′ (0)

2d ,

one poses for ε > 0,
V := εϕ (x, y −R− 1) .

It has been shown in proof of lemma 31 that for ε small enough, −d∆V < f (V ) in
BR (0, R + 1). Furthermore, by taking ε ≤ 1, we have V ≤ 1. Extend V by zero outside
BR (0, R + 1) in the Field and recall that extension V . One can prove that (0, V ) is
a generalised sub-solution of (II.2) in the meaning of proposition 29 (page 47). Let
(u, v) be the solution of (II.2) starting from initial condition (0, V ). In the same vein
as corollary 19 (page 23) we may show that, because (u, v) is sub-solution of its own
system at time t = 0, both u and v are increasing with respect to the time at fixed
location in space.

Now we have created an increasing solution, we are looking for a decreasing one.
We pose

U := max
(

sup
R

(u0) ; 1
µ

sup
F

(v0) ; 1
µ

)
,

V := max
(
µ sup

R
(u0) ; sup

F
(v0) ; 1

)
.

Although U and V do not share de same domain, note that “V = µU” ; otherwise said,[
U = sup

R
(u0)

]
⇐⇒

[
V = µ sup

R
(u0)

]
[
U = 1

µ
sup
F

(v0)
]
⇐⇒

[
V = sup

F
(v0)

]
[
U = 1

µ

]
⇐⇒

[
V = 1

]
.
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It is then easy, thanks to its constant nature, to show that
(
U, V

)
is super-solution of

(II.2). Let (u, v) be the solution of (II.2) starting from the initial state
(
U, V

)
. By the

same argument we use for (u, u), both u and v are decreasing with respect to the time
at fixed location in space.

Hence one disposes of

• (u, v) which is bounded from above and increasing at fixed location with respect
to the time, and so converges point-wise up to (u∞, v∞) as t tends to +∞,

• (u, v) which is bounded from bellow and decreasing at fixed location with respect
to the time, and so converges point-wise down to (u∞, v∞) as t tends to +∞.

Then parabolic estimates assert us that both of these two convergences are more than
point-wise, namely locally uniformly in space. So one can “take the limit” in system
(II.2) which leads us to the stationary problem (II.5) and therefore, one actually has

(u∞, v∞) = (u∞, v∞) ≡ (1/µ, 1) .

The last thing we have to do to complete this proof is slipping our solution (u, v)
between (u, v) and (u, v) for t large enough. Getting (u, v) bellow (u, v) is easy thanks
to the comparison principle because it is the case at t = 0. Therefore,

lim sup
t→∞

(u (t, x) , v (t, x, y)) ≤
(

1
µ
, 1
)

locally uniformly in space.

We cannot do the same for (u, v) because v is positive and v0 may not. (Note u is not
a problem because it starts from 0 ≤ u0.) Since we know (thanks to the comparison
principle) that v is positive for all positive time, we wait the instant t = 1 so that v
has time to peel off. By taking (if necessary) ε smaller in V definition, it skips under
v ( • + 1, • , • ), so the comparison principle may be applied and yields

lim inf
t→∞

(u (t+ 1, x) , v (t+ 1, x, y)) ≥
(

1
µ
, 1
)

locally uniformly in space.

Thereby we recover

lim
t→∞

(u (t, x) , v (t, x, y)) =
(

1
µ
, 1
)

locally uniformly in space

that’s what we were aiming for. 2
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II.6 Exponential super-solutions

We have shown in the previous section that there is Hair Trigger Effect for the Field-
Road model with Fisher-KPP reaction, that is any non-degenerate given population,
no matter how small, invade the whole half plane R2

+ locally uniformly in space. We
wonder now about the speed of space invasion. In the current section we shall build
the tools which will allow us to control the speed of space invasion from above. More
precisely we will create an exponential super-solution above the solution and which will
cross the space at constant speed. That speed shall be an upper bound for the speed
of the solution so it is in our interest to make the exponential super-solution travel as
slowly as possible to get the best control.

Before starting, we announce a result on the speed of propagation solutions already
established in by Aronson and Weinberger in [2] which concern the classical R-D system
in the whole space R2. Of course, we expect that a Road diffusion D significantly
larger than the diffusion d in the Field would enhance the invasion speed of the classical
system.

Theorem 33 (Aronson-Weinberger) (Asymptotic spreading speed) (1978)
Let define CKPP := 2

√
df ′ (0) and consider the R-D Cauchy problem in R2,

{
∂tu = d∆u+ f (u) (t,X) ∈ (0;∞)× RN

u (0, X) = u0 (X) X ∈ RN .
(II.13)

Imagine a viewer at any initial position Y ∈ RN and straightly moving in some
direction at speed c > 0. That theorem presents two results.
The viewer is too slow that is whether c ∈ (0;CKPP), then the viewer suffers the
invasion and only sees u = 1 “behind him”(a) as t become large. Otherwise said,

lim
t→∞

(
inf

|X−Y |≤ct
u (t,X)

)
= 1.

The viewer is too fast that is whether c ∈ (CKPP;∞), then the viewer outrun the
invasion and only sees u = 0 ”in front of”(b) him as t become large. Otherwise said,

lim
t→∞

(
sup

|X−Y |≥ct
u (t,X)

)
= 0.

a That is his vision sight is in the time-expanding ball starting from his initial position and whom
radius equals ct.

b That is his vision sight is the complement of the set mentioned in the previous note.
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Figure F28 – Illustration of two viewers represented at three different times. The
viewer moves slower than CKPP which is the invasion speed of the solution whereas
the viewer moves faster than CKPP. Observe that in large time, the slow-viewer only
sees u = 1 “behind him” whereas the fast-viewer only sees u = 0 “in front of him”.

We can now look for the exponential super-solutions. Recall that, with the KPP-
hypothesis (see page 8), f (v) ≤ vf ′ (0) for all positive v. Therefore, all solutions of
system

∂tu−D∂xxu = v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v = vf ′ (0) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) = µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

(II.14)

should be (provided they exist) super-solutions of system (II.2). One defines then for

α > 0, β ∈ R, γ > 0, c ∈ R,

the function (
u (t, x)
v (t, x, y)

)
:=
(

eα(x+ct)

γeα(x+ct)−βy

)
which will be the exponential super-solution we mentioned at the beginning of the
section. Let us at first justify that it is a well tool to deal with some propagation speed.
It is easy to see that, given ` > 0, the level-set {u = `} is reduced to one point which
travels the R line at constant speed c, on the left if c > 0 and on the right if c < 0 as
one sees on figure (F29 )
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Figure F29 – Illustration of the u-part of the travelling exponential super-solution
with the speed c = 1 and α = 1.

We actually have the same thing for v; indeed, take the level-set {u = `} with the
innocent choice ` = γ. There comes:

[(x, y) ∈ {u = γ}] ⇐⇒ [v (t, x, y) = γ]
⇐⇒

[
γeα(x+ct)−βy = γ

]
⇐⇒ [αx− βy + αct = 0]
⇐⇒ [(x, y) ∈ ∆γ]

where ∆γ is the half line in R2
+ starting from the point (−ct, 0) and directed by the

vector
(
β/α

1

)
. In a more general case, the level-set {u = `} is the half line

∆` :=
(

ln
(
`
γ

)
/α− ct
0

)
︸ ︷︷ ︸

call that point A

+s
(
β/α

1

)
, with s ∈ R+.

Note the direction of that line does not depend on time and therefore the latter cross the

half space following
(
−1
0

)
at speed c. Another time, the situation has been illustrated

on figure (F30 )
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Figure F30 – Illustration of the v-part of the travelling exponential super-solution
with the speed c = 1 and α, β, γ = 1.

Our aim is now, for given c, to find the “good” parameters α, β, γ for which (u, v)
is a solution of problem (II.14). Note that the diffusion coefficients d and D are fixed.
If we insert (u, v) inside (II.14), we are lead to the three following relations respectively
coming from each of the three equations of the system.

−Dα2 + cα = γ − µ (i)
−dα2 + cα = f ′ (0) + dβ2 (ii)
dβγ = µ− γ. (iii)

(II.15)

(i) and (iii) Remark first that by modifying (iii), one gets

γ = µ

1 + dβ

and so, because β induces the value of γ, we just have to find some conditions on α
and β. Solving now the quadratic equation (i) whom α is the parameter, we find

α±D (c, β) := 1
2D

(
c±

√
c2 + 4µdDβ

1 + dβ

)
.

To get the inside of the square root non-negative, β has to be chosen lower than −1/d
or greater than − c2

d(c2+4µD) . Note that first case has to be discarded because γ is chosen
positive. One sets now
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And we get so [(i) and (iii)] ⇐⇒ [(β, α) ∈ Γc,D]. One refers the reader to figure (F32 )
for the shape of Γc,D.

(ii) Let’s now see equation (ii) which is equivalent to(
α− c

2d

)2
+ β2 = c2 − C2

KPP
4d2 .

From this viewpoint, (β, α) has to be on the circle centred on (0, c/2d) and of radius

βKPP (c) :=

√
c2 − C2

KPP

2d .

Note we require that c ≥ CKPP otherwise such a circle cannot exist and so (ii) cannot be
verified. (Note ΓCKPP,d is a single point.) One represents that circle with two functions
that respectively correspond to the upper and lower piece of it:

α±d (c, β) :=
c±

√
c2 − C2

KPP − 4d2β2

2d .

Like as bellow, one takes

And we get so [(ii)] ⇐⇒ [(β, α) ∈ Γc,d]. One refers again the reader to figure (F32 )
for the shape of Γc,d.

Hence the couples (α, β) we are looking for are at the intersection Γc,D ∩ Γc,d and
we thus have to find for which c ≥ CKPP that intersection is non-empty. Recall that
our aim is having c as small as possible. We distinguish three cases depending on the
position of D relatively to 2d, or in an equivalent way, on the position of compared
to (see figure (F31 )).

Figure F31 – Configuration of the graph of compatibility whether the position of D
relatively to 2d. Note that on the draw, for D > 2d and D < 2d, Γc,D and Γc,d intersect

but it is not always the case. As you may see on figure (F32 ).
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Figure F32 – Compatibility of parameters α and β: (u, v) is solution of (II.14) when
Γc,D and Γc,d intersect.

Case D > 2d In that situation, we have c/D < c/2d, that is is strictly above .
Therefore, there is no intersection between Γc,d and Γc,D when c = CKPP because in that
case Γc,d is reduced to the singleton {(0, c/2d)} = { }. Observe now that ∂cα−d < 0
and that

lim
c→∞

α−d (c, 0) = lim
c→∞

c−
√
c2 + c2

KPP

2d = 0.

Therefore, the point vertically get down to the origin. Furthermore, we can also see
that ∂cα+

D > 0 and that

lim
c→∞

α+
D (c, 0) = lim

c→∞

c

D
= +∞.

Hence the point vertically get up toward infinity. Thereby Γ+
c,D and Γ−c,d have to

cross for some c > CKPP. Because α−c,d − α+
c,D is strictly convex, there exists a unique

C∗ = C∗ (µ, d,D) > CKPP such that

• Γ−C∗,d and Γ+
C∗,D are tangent and thus ΓC∗,d and ΓC∗,D intersect exactly once,

• for all c ∈ [CKPP;C∗), Γc,d and Γc,D do not intersect.

That amount C∗ is the minimal speed we are looking for.
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Case D = 2d In that situation, we have c/D = c/2d, that is and share the same
place. Then for c = CKPP, ΓC∗,d = { } and ΓC∗,D intersect at and thus C∗ := CKPP
is the minimal speed so that equations of (II.15) are compatible.

Case D < 2d In that situation, we have c/D > c/2d, that is is strictly bellow .
Remind that for β > − c2

d(c2+4µD) fixed, α±c,d (c, β) denote the two roots of the quadratic
equation (i). Take now c = CKPP and (β, α) = (0, CKPP/2d) = .

• We set γ = µ to get (iii).

• (ii) is clearly satisfied because ΓCKPP,d = {(0, CKPP/2d)} = { }.

• Finally, because, from one hand is between and , otherwise said, CKPP/2d
is between the two roots of (i), and from another hand −D < 0, we get

−Dα2 + cα ≥ γ − µ.

That is the function (u, v) taken with (α, β, γ) := (CKPP/2d, 0, µ) is actually a super-
solution of system (II.14) and then, by transitivity, a super-solution of (II.2). What’s
why one chooses C∗ := CKPP without any further considerations on that case.

To conclude that section, we have therefore found some exponential super-solutions
(u, v) of problem (II.2) travelling at speed

• C∗ > CKPP if D > 2d,

• C∗ = CKPP if 0 ≤ D ≤ 2d.

II.7 Asymptotic spreading speed C∗

In the continuity of the previous section, we give here a result concerning the asymptotic
spreading speed of solutions for the Field-Road model. As mentioned above it is expected
that this asymptotic speed depends on how individuals move fast on the Road compared
to the Field.

We consider in the sequence the amount C∗ = C∗ (µ, d,D) as defined in section
II.6. Before giving the “Field-Road version” of theorem 13 (page 58) let us remind that

• C∗ = CKPP if D ≤ 2d,

• C∗ > CKPP if D > 2d.

C∗ is actually the asymptotic spreading speed of the solution. Remark there are, as
predicted, two regimes of speed depending on the position of D relatively to 2d:

• if D ≤ 2d, then the model behaves as the classical one in RN ,

• if D > 2d, then the population invades the space strictly faster than for the
classical model in RN .

64



II. Fisher-KPP on the Field-Road 7. Asymptotic spreading speed C∗

Theorem 34 (Berestycki et al.) (Asymptotic spreading speed (Field-Road))
Let (u, v) be the solution of the Fisher-KPP Field-Road problem (II.2) starting from
the initial datum (u0, v0) which is supposed

• non-negative, • non-zero, • smaller than
(

1
µ
, 1
)
,

• compactly supported.
Then (there is HTE and) there is an asymptotic spreading speed equals to C∗ following
the x-direction; otherwise said:
Too slow viewer For all 0 < c < C∗,

lim
t→∞

(
inf
|x|≤ct

(u (t, x) , v (t, x, y))
)

=
(

1
µ
, 1
)
.

Too fast viewer For all c > C∗,

lim
t→∞

(
sup
|x|≥ct

(u (t, x) , v (t, x, y))
)

= (0, 0) .

The proof of theorem 34 consists in finding some sub- and super-solutions which
shall surround (u, v). The (exponential) super-solutions have already been devised in
section II.6 so we are now interested in setting up some sub-solutions. Let us consider
the following linearised system in the moving framework penalised by some δ > 0:

∂tu−D∂xxu+ c∂xu = v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v + c∂xv = v (f ′ (0)− δ) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) = µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

(II.16)

Lemma 35
Consider problem (II.16). We present here two analogous results depending on the
regime imposed by the ratio D/d.
1 Assume D > 2d, then for some c < C∗ close enough to C∗, there exists δ > 0 such
that problem (II.16) admits a

• non-negative, • non-zero, • compactly supported

generalised sub-solution in the meaning of proposition 29.
2 Assume 0 ≤ D ≤ 2d, then for c ∈ (0;CKPP) = (0;C∗), there exists δ > 0 such that
problem (II.16) admits a

• non-negative, • non-zero, • compactly supported

generalised sub-solution in the meaning of proposition 29.
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We shall admit part 1 of lemma 35 and only show part 2 whom the reasoning
is a classical one.

Proof (Lemma 35) 2
Let c be in (0;CKPP).

Claim. For δ ∈ (0; f ′ (0)− c2/4d), the equation

−d∆V + c∂xV =
(
f ′ (0)− δ

2

)
V (x, y) ∈ F (II.17)

owns a compactly supported sub-solution.

For x0 ∈ R∗+, consider the Dirichlet problem{
−dΦ′′ + cΦ′ = (f ′ (0)− δ) Φ x ∈ (−x0;x0)
Φ (±x0) = 0. (II.18)

One assess the characteristic equation of first line of (II.18):

−dr2 + cr + (δ − f ′ (0)) = 0 (II.19)

whom discriminant ∆ = c2+4d (δ − f ′ (0)) is negative if and only if δ ∈ (0; f ′ (0)− c2/4d).
Take then δ in that set, (II.19) owns so two complex roots which are

r0 = c

2d ± i

√
f ′ (0)− δ − c2/4d

√
d︸ ︷︷ ︸

let us call that ω.

Therefore there exists A,B ∈ R such that

Φ (x) = e(c/2d)x (A cos (ωx) +B sin (ωx)) .

By choosing x0 := π
2ω , the Dirichlet boundary conditions provide A = 1 and B = 0; so

Φ (x) = e(c/2d)x cos (ωx) .

Let now ψ = ψR the principal eigenfunction (see Toolbox page 118) for −∂yy in
(−R;R) provided with Dirichlet boundary conditions. Take R small enough so that the
eigenvalue associated to ψ is smaller than δ/2d. We assert then that the function V
defined on F by

V (x, y) :=
{

Φ (x)ψ (y +R + 1) if (x, y) ∈
(
− π

2ω ; π
2ω

)
× (1; 2R + 1)

0 otherwise
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is the sub-solution of (II.17) announced by the claim. Indeed,

−d∆V + c∂xV −
(
f ′ (0)− δ

2

)
V = −d (ψΦ′′ + Φψ′′) + cΦ′ψ −

(
f ′ (0)− δ

2

)
Φψ

≤ ψ

(
dΦ′′ + δ

2Φ + cΦ′ −
(
f ′ (0)− δ

2

)
Φ
)

= ψ (dΦ′′ + cΦ′ − (f ′ (0)− δ) Φ)︸ ︷︷ ︸
remind that Φ is solution of (II.18)...

= 0.

Thereby the claim is established. 2(Claim)

Take now (U, V ) := (0, V ), it can easily be checked that this function is the
generalised sub-solution promised by lemma 35 whom the proof is therefore achieved. 2

Proof (Theorem 34) Too fast viewer
Assume c > C∗ and consider as defined in section II.6 the exponential super-solution of
problem (II.2) (

u (t, x)
v (t, x, y)

)
def=
(

eα(x+C∗t)

γeα(x+C∗t)−βy

)
.

By an horizontal symmetry in space, the function(
u∼ (t, x)
v∼ (t, x, y)

)
:=
(

eα(−x+C∗t)

γeα(−x+C∗t)−βy

)

is also a super-solution. Then, up to take for some positive t0

(u (t0 + t, x) , v (t0 + t, x, y)) instead of (u (t, x) , v (t, x, y))

and
(u∼ (t0 + t, x) , v∼ (t0 + t, x, y)) instead of (u∼ (t, x) , v∼ (t, x, y)) ,

it is not restrictive to suppose that (u, v) and (u∼, v∼) are over the initial datum (u0, v0)
because the latter is bounded and compactly supported. Whence, thanks to the
comparison principle, we get

(u, v) ≤ (u, v) and (u, v) ≤ (u∼, v∼)

everywhere and at any time. We have

(0, 0)
CP
≤ sup
|x|≥ct

(u (t, x) , v (t, x, y)) ≤ sup
x≥ct

(u (t, x) , v (t, x, y))︸ ︷︷ ︸
(F)

+ sup
x≤−ct

(u (t, x) , v (t, x, y))︸ ︷︷ ︸
(♣)

.
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Let’s prove that both (F) and (♣) become (0, 0) as t tends to infinity.

(F) = sup
x≥ct

(u (t, x) , v (t, x, y))

CP
≤ sup

x≥ct
(u∼ (t, x) , v∼ (t, x, y))

= sup
x≥ct

(
eα(−x+C∗t), γeα(−x+C∗t)−βy

)
=
(
eα(−ct+C∗t), γeα(−ct+C∗t)−βy

)
=
(
eα(C∗−c)t, γeα(C∗−c)t−βy

)
then, because by assumption C∗ − c < 0,

(F) t→∞−→ (0, 0) .

Proving that (♣) t→∞−→ (0, 0) follows the same mood:

(♣) = sup
x≤−ct

(u (t, x) , v (t, x, y))

CP
≤ sup

x≤−ct
(u (t, x) , v (t, x, y))

= sup
x≤−ct

(
eα(x+C∗t), γeα(x+C∗t)−βy

)
=
(
eα(−ct+C∗t), γeα(−ct+C∗t)−βy

)
=
(
eα(C∗−c)t, γeα(C∗−c)t−βy

)
t→∞−→ (0, 0) .

Therefore, one finally gets the wanted result: lim
t→∞

(
sup
|x|≥ct

(u (t, x) , v (t, x, y))
)

= (0, 0). 2

We prove now the second part of theorem 34 which is the less simple of the two.

Proof (Theorem 34) Too slow viewer
Assume c ∈ (0;C∗) = (0;CKPP) and consider the stationary generalised sub-solution
(u, v) of problem (II.16) provided by lemma 35 (note we take c close enough to C∗ if
D > 2d to ensure the existence of such sub-solution).
Claim. There exists γ0 such that for all γ ∈ (0; γ0] the couple (γu, γv) is a sub-solution
of the following non-linear problem in the moving framework

∂tu−D∂xxu+ c∂xu = v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v + c∂xv = f (v) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) = µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

(II.20)
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Let’s prove that claim. Showing that (γu, γv) is a sub-solution for first and third line of
problem (II.20) does not pose any problem if one reminds that (u, v) is a sub-solution
of (II.16); indeed, we have well

∂t (γu)−D∂xx (γu) +c∂x (γu)− γv (t, x, 0) + µγu

= γ (∂tu−D∂xxu+ c∂xu− v (t, x, 0) + µu)
≤ 0,

and

−d∂y (γv) (t, x, 0)−µγu (t, x) + γv (t, x, 0)
= γ (−d∂yv (t, x, 0)− µu (t, x) + v (t, x, 0))
≤ 0.

It thus remains to show that (γu, γv) is a sub-solution for second line of problem (II.20).
One has

∂t (γv)− d∆ (γv) + c∂x (γv) = γ (∂tv − d∆v + c∂xv)
≤ γ (f ′ (0)− δ) v
= (f ′ (0)− δ) (γv) . (II.21)

Then by using Taylor-Young’s formula, one gets

f (γv) = (γv) f ′ (0)− ψ (γv) , (II.22)

where

• ψ (γv) = o
(
(γv)2

)
(Taylor-Young),

• ψ (γv) ≥ 0 (KPP-hypothesis).

Whence, because v is bounded, for all δ > 0 and γ small enough, (γv) is also small
enough to get (by comparing quadratic versus linear decadence)

0 ≤ ψ (γv) ≤ δ (γv) .

Therefore,
−ψ (γv) ≥ −δ (γv)

and so, using (II.22),
f (γv) ≥ (f ′ (0)− δ) (γv) .

Taking up inequality (II.21), one achieves

∂t (γv)− d∆ (γv) + c∂x (γv) ≤ f (γv) . (II.23)

Hence it has been shown that (γu, γv) is a sub-solution of whole problem (II.20). One
draws the attention of the reader on the fact that inequality (II.23) is actually strict
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in every point where v is non-zero and so, as such points exist, (γu, γv) cannot be a
solution of (II.20). 2(Claim)

Let thus γ ∈ (0; γ0], we denote by (uγ, vγ) the solution of the non-linear prob-
lem (II.20) starting from the initial datum (γu, γv). Because, thanks to the claim,
(uγ, vγ)|t=0 = (γu, γv) is a sub-solution of the problem whom it is solution, by some
similar arguments as those used to show corollary 19, the function (uγ, vγ) is increasing
with respect to the time when space is fixed. Moreover, because (γu, γv) is not a
solution of (II.20), (γu, γv) is strictly bellow (uγ (t, • ) , vγ (t, • )) for all positive time t.
Indeed:

• (γu, γv) is a sub-solution,

• (uγ, vγ) is a solution and then also a super-solution,

• (γu, γv) ≤ (uγ (0, • ) , vγ (0, • )),

whence by applying the generalised comparison principle,

• either exists T > 0 such that (γu, γv) = (uγ (t, • ) , vγ (t, • )) in [0;T ],

• or (γu, γv) < (uγ (t, • ) , vγ (t, • )) for all positive time t.

First situation have to be discarded otherwise (γu, γv) would be a solution of (II.20)
and one thereby gets the wanted conclusion.

The increase of bounded functions (uγ ( • , x) , vγ ( • , x, y)) ((x, y) ∈ F ) allows us to
say that (uγ, vγ) converges pointwise in space toward a limit function (Uγ, Vγ) as t→∞.
Furthermore, by parabolic estimates, that convergence happens (up to a sub-sequence)
locally uniformly in space. Now, as (uγ, vγ) is strictly above its initial datum for all
positive time, we have the strict order relation (Uγ, Vγ) > (γu, γv) and one thus may
find some k > 0 such that for all h ∈ (−k; k),(

γu(h), γv(h)
)
< (Uγ, Vγ) ,

where
(
γu(h), γv(h)

)
denotes (γu, γv) translated of h along the x-direction. Call(

u(h)
γ , v(h)

γ

)
the solution of (II.20) starting from the initial datum

(
γu(h), γv(h)

)
, the last

inequality spreads then by comparison for all positive time, that is(
u(h)
γ , v(h)

γ

)
< (Uγ, Vγ) .

Take then the limit as t→∞, one obtains(
U (h)
γ , V (h)

γ

)
≤ (Uγ, Vγ) .

So (Uγ, Vγ) is above its translated along the x-direction and therefore that couple has
to be independent of the x variable; that is

• Uγ ≡ constant, and
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• Vγ = Vγ (y).
Because of the local uniform in space convergence of (uγ, vγ) toward (Uγ, Vγ), the
latter satisfies the stationary version of problem (II.20) which gives, combined with the
independence to x, the following ODE Cauchy problem:

Vγ (0) = µUγ
V ′′γ = −f (Vγ) /d in R∗+
V ′γ (0) = 0.

(II.24)

By posing X :=
(
Vγ
V ′γ

)
, one may rewrite that problem by the following way:

X ′ = F (X) in R∗+
X (0) =

(
µUγ

0

)
.

(II.25)

where Uγ ∈ (0; 1/µ] plays as a parameter and the function F is smooth and defined by
F (X1, X2) := (X2,−f (X1) /d) .

Existence and uniqueness of a solution for (II.25) is then guaranteed thanks to the
Cauchy-Lipschitz theorem, and one easily can see that F owns two equilibrium points
which are (

0
0

)
and

(
1
0

)
.

One distinguish then two cases depending on the value of the parameter Uγ:

• if Uγ ≡ 1/µ, then X :=
(
Vγ
V ′γ

)
starts from the equilibrium point

(
1
0

)
so in that

case Vγ ≡ 1,

• if Uγ ≡ ` ∈ (0; 1/µ), we have

V ′′γ (0) = −f (Vγ (0))
d

= −f (`)
d

< 0,

then for small y > 0, V ′γ (y) < 0 and Vγ (y) ∈ (0; 1) and so V ′′γ (y) remains negative.
Whence Vγ is concave in y which implies that Vγ is bellow its tangent at point
y and whom the slope is negative. Thereby Vγ has to hit 0 for some positive y0
which is exclude because of the order relation (0, 0) ≤ (γu, γv) < (Uγ, Vγ). This
case has therefore to be discarded.

Figure F33 – Illustration of the two possible cases
depending on the value of Uγ. One sees here that
the properties “Uγ ≡ ` ∈ (0; 1/µ)” and “Vγ remains
positive” are not compatible; therefore Uγ has to be
identically equal to 1/µ and then Vγ ≡ 1.
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Hence the conclusion we obtain via this ODE reasoning is that (Uγ, Vγ) ≡ (1/µ, 1).
To achieve the proof, we are now going to compare the solution (u, v) with the

functions (
uγ (t, x+ ct)
vγ (t, x+ ct, y)

)
and

(
uγ (t,−x+ ct)
vγ (t,−x+ ct, y)

)
. (II.26)

Note that the initial Field-Road problem (II.2) and the problem in the moving framework
(II.20) are actually equivalent in the following way:

[(u ( • , • ) , v ( • , • , • )) is solution of (II.2)]
m

[(u ( • , • − ct) , v ( • , • − ct, • )) is solution of (II.20)] .

Therefore, both functions given in (II.26) are some solutions of (II.2).
Up to let a bit of time elapse, it is not restrictive to suppose that (u, v)|t=0 is positive

and then, up to choosing some smaller γ ∈ (0; γ0], one may get (γu, γv) < (u, v)|t=0.
Take now T > 2 and 0 ≤ ξ ≤ c (T − 2). One sets then τ ∈ [1;T/2] such that
ξ = c (T − 2τ). By comparison, we have, for all t > 0 and (x, y) ∈ F ,

(u (t, x) , v (t, x, y)) ≥ (uγ (t, x+ ct) , vγ (t, x+ ct, y)) .

Then in particular, at time t = τ ,

(u (τ, x) , v (τ, x, y)) ≥ (uγ (τ, x+ cτ) , vγ (τ, x+ cτ, y))

and reminding that (uγ, vγ) is increasing with respect to the time,

(u (τ, x) , v (τ, x, y)) ≥ (uγ (1, x+ cτ) , vγ (1, x+ cτ, y)) . (II.27)

One takes now η ∈ (0; γ0] small enough as well (independently of T ) in such a way that

(ηu (−x) , ηv (−x, y)) ≤ (uγ (1, x) , vγ (1, x, y)) . (II.28)

By gathering (II.27) and (II.28) there comes

(u (τ, x) , v (τ, x, y)) ≥ (ηu (−x− cτ) , ηv (−x− cτ, y)) .

Applying the comparison principle to that inequality, one obtains

(u (t+ τ, x) , v (t+ τ, x, y)) ≥ (uη (t,−x− cτ + ct) , vη (t,−x− cτ + ct, y)) .

Take t− τ instead of t,

(u (t, x) , v (t, x, y)) ≥ (uη (t− τ,−x+ c (t− 2τ)) , vη (t− τ,−x+ c (t− 2τ) , y))

and assess that at time t = τ ,

(u (τ, x) , v (τ, x, y)) ≥ (uη (0,−x− cτ) , vη (0,−x− cτ, y)) .
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One applies once again the comparison principle on the latter equality:

(u (t+ τ, x) , v (t+ τ, x, y)) ≥ (uη (t,−x+ c (t− τ)) , vη (t,−x+ c (t− τ) , y)) .

And take that at time t = T − τ :

(u (T, x) , v (T, x, y)) ≥ (uη (T − τ,−x+ c (T − 2τ)) , vη (T − τ,−x+ c (T − 2τ) , y)) ,

that is

(u (T, x) , v (T, x, y)) ≥ (uη (T − τ,−x+ ξ) , vη (T − τ,−x+ ξ, y)) .

If one assess that inequality at x = ξ, we get

(u (T, ξ) , v (T, ξ, y)) ≥ (uη (T − τ, 0) , vη (T − τ, 0, y)) .

Next, using the time-increase of (uη, vη),

(u (T, ξ) , v (T, ξ, y)) ≥
(
uη

(
T

2 , 0
)
, vη

(
T

2 , 0, y
))

t→∞−→ (Uγ, Vγ)

≡
(

1
µ
, 1
)
.

Thereby, one has prove here that

lim
T→∞

(
inf

0≤ξ≤c(T−2)
(u (T, ξ) , v (T, ξ, y))

)
≥
(

1
µ
, 1
)
.

To expand symmetrically the domain of the infimum in the latter limit, repeat the
previous operations by replacing ξ with −ξ and taking τ such that ξ = −c (T − 2τ).
By doing this one gets

lim
T→∞

(
inf

|ξ|≤c(T−2)
(u (T, ξ) , v (T, ξ, y))

)
≥
(

1
µ
, 1
)
.

If this inequality would be strict, we would then have in the centred unit ball:

lim
T→∞

(
inf
|ξ|≤1

(u (T, ξ) , v (T, ξ, y))
)
≥ lim

T→∞

(
inf

|ξ|≤c(T−2)
(u (T, ξ) , v (T, ξ, y))

)
>

(
1
µ
, 1
)

which is impossible because (u, v) tends toward (1/µ, 1) locally uniformly in space.
Hence the inequality was actually an equality:

lim
T→∞

(
inf

|ξ|≤c(T−2)
(u (T, ξ) , v (T, ξ, y))

)
=
(

1
µ
, 1
)
,

that’s the result we were aiming for. 2
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II.8 C∗ behaviour as D tends to +∞

One wonders here how becomes the evolution of C∗ = C∗ (µ, d,D) when the Road
diffusion D becomes large. For this section, it is assumed that the reader is familiar
with the figures and concepts discussed in section II.6 because it is the starting point
for the asymptotic reasoning that we are about to do. We announce now the main
result we aim to prove:

Theorem 36 (Berestycki et al.) (Spreading speed for large Road diffusion)
Let d and µ be fixed positive and D evolving in (0;∞), one considers the asymptotic
spreading speed C∗ = C∗ (µ, d,D) given in the previous section (a) . The following
assertion holds then true:

lim
D→∞

C∗/
√
D exists and is a real positive number.

Otherwise said,
∃λ > 0 such that C∗ D→∞∼ λ

√
D .

a Namely, see theorem 34 page 65.

Proving theorem 36 shall require that lemma:
Lemma 37
We are provided with that asymptotic control on C2

∗/D:
√

4µ2 + (f ′ (0))2 − 2µ ≤ lim inf
D→∞

C2
∗
D
≤ lim sup

D→∞

C2
∗
D
≤ f ′ (0) . (II.29)

Proof (Lemma 37)
Let D > 2d, we are so in the first case of figure (F31 ) page 62:

Figure F34 – First case of figure (F31 ).

When c = C∗, we have sawn that Γ−c,d and Γ+
c,D are tangent and one notes (β∗, α∗) the

intersection point between theses curves. We recall that Γ−c,d and Γ+
c,D are respectively
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the graph of the functions

α−d (c, β) :=
c−

√
c2 − C2

KPP − 4d2β2

2d

and

α+
D (c, β) := 1

2D

(
c+

√
c2 + 4µdDβ

1 + dβ

)
.

We thus may have α−d (C∗, β∗) = α+
D (C∗, β∗) and ∂βα

−
d (C∗, β∗) = ∂βα

+
D (C∗, β∗); and

because

• ∂βα
−
d (C∗, β) is positive for all β and

• ∂βα
+
D (C∗, β) is non-positive for all non-positive β,

β∗ cannot be non-positive and we necessarily get β∗ > 0. Furthermore, thanks to the
convexity of α−d (C∗, • )− α+

D (C∗, • ), Γ+
C∗,D is strictly bellow Γ−C∗,D except at the point

(β∗, α∗). Translating that geometric affirmation at the point β = 0 ( 6= β∗), we obtain

α+
D (C∗, 0) = C∗

D

<
C∗
2d − βKPP (C∗)

= α−d (C∗, 0) . (II.30)

Finally, because α−d (C∗, • ) and α+
D (C∗, • ) are increasing as • is positive, we get

α−d (C∗, 0) < α−d (C∗, β∗)
= α+

D (C∗, β∗)
< lim

β→∞
α+
D (C∗, β)

= 1
2D

(
C∗ +

√
C2
∗ + 4µD

)
. (II.31)

By bringing (II.30) and (II.31) together we obtain so

C∗
D

<
C∗
2d − βKPP (C∗) <

1
2D

(
C∗ +

√
C2
∗ + 4µD

)
(II.32)

as you may see on figure (F35 ).
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Figure F35 – Illustration of the inequality (II.32) which geometrically interprets as
“ is bellow which is bellow ”.

Recalling that βKPP (c) :=
√
c2−C2

KPP
2d , we get

1
D
<

1
2d

1−

√√√√1− C2
KPP
C2
∗

 <
1

2D

(
1 +

√
1 + 4µD

C2
∗

)
(II.33).

Suppose that [D →∞] 6⇒ [C∗ →∞]. Then by taking the limit in the second inequality
of (II.33), we would have

0 < 1
2d

1−
√√√√1− CKPP2

inf
D→∞

C2
∗

 <
1

2D

(
1 +

√
1 + 4µD

C2
∗

)
D→∞−→ 0,

that is absurd so D → ∞ implies C∗ → ∞. This allows us to use Taylor’s series for√
1− • in a vicinity from 0:√

1− CKPP

C2
∗

= 1− CKPP

2C2
∗

+ o

(
1
C2
∗

)
.

Whence, taking up (II.33),

1
D
<

1
2d

(
C2

KPP
2C2
∗

+ o

(
1
C2
∗

))
<

1
2D

(
1 +

√
1 + 4µD

C2
∗

)

1
D
<
C−2
∗

2d

(
C2

KPP
2 + o (1)

)
<

1
2D

(
1 +

√
1 + 4µD

C2
∗

)
(II.34)
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Let us take τ := C∗/
√
D . Then first inequation of (II.34) becomes

τ 2 <
C2

KPP
4d + o (1) = f ′ (0) + o (1) . (II.35)

Take the limit as D →∞ to get a first piece of the result:

lim sup
D→∞

C∗
D
≤ f ′ (0) .

We work now on second inequality of (II.34),

1
d

(
C2

KPP
2 + o (1)

)
<
C2
∗
D

(
1 +

√
1 + 4µD

C2
∗

)

2C
2
KPP
4d + o (1) < τ 2

1 +
√

1
τ 2 (τ + 4µ)


2f ′ (0) + o (1) < τ 2 + τ

√
(τ + 4µ) ,

and then with (II.35),

2f ′ (0) + o (1) < τ 2 + τ
√

(τ + 4µ) < f ′ (0) + τ
√

(τ + 4µ) + o (1) . (II.36)

Consider the both extremities hands of (II.36), it implies successively

f ′ (0) + o (1) < τ
√
τ 2 + 4µ

(f ′ (0))2 + o (1) < τ 2
(
τ 2 + 4µ

)
(f ′ (0))2 + o (1) + 4µ2 < τ 4 + 4µτ 2 + 4µ2

(f ′ (0))2 + 4µ2 + o (1) <
(
τ 2 + 2µ

)2

√
(f ′ (0))2 + 4µ2 + o (1) < τ 2 + 2µ√
(f ′ (0))2 + 4µ2 + o (1) − 2µ < τ 2.

Whence, taking the limit as D →∞, one finally achieves√
(f ′ (0))2 + 4µ2 + o (1) − 2µ < lim inf

D→∞

C∗
D
,

and thereby the aimed control is shown. 2
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Proof (II.36) (Spreading speed for large Road diffusion)
We start by reminding the algebraic system (II.15) with which C∗ has been obtained:

−Dα2 + cα = γ − µ
−dα2 + cα = f ′ (0) + dβ2

dβγ = µ− γ.
(II.15)

Lemma 37 gives actually a D-independent asymptotic control on C2
∗/D; this allow us

to rescale α and c in (II.15) in the following way: let us take

c̃ := c√
D

and α̃ :=
√
D α.

We get the rescaled system
−α̃2 + c̃α̃ = γ − µ (i)
− d
D
α̃2 + c̃α̃ = f ′ (0) + dβ2 (ii)

dβγ = µ− γ. (iii)
(II.37)

As we said above, thanks to lemma 37, the amount C̃∗ := C∗/
√
D remains bounded

independently of D as this one tends to infinity – note however that it is not yet sure
that C∗/

√
D has a limit. More precisely, the lower bound of C̃∗ stay away from 0 and

the upper one is bellow f ′ (0). Looking at (i) in (II.37), one sees that α̃ has also to be
bounded as D →∞ (otherwise we would get −∞ = γ − µ); so by taking the limit of
system (II.37), the amount − d

D
α̃2 vanishes and we obtain: ((i) and (iii) of (II.37) have

been gathered in (i) of (II.38){
−α̃2 + c̃α̃ = − dβµ

1+dβ (i)
α̃ = (f ′ (0) + dβ2) /c̃ (ii) . (II.38)

System (II.38) is the asymptotic version of the one (II.37). When D shall be large, C̃∗
will tend to be (provided that exists) the minimal c̃ for which (II.38) has solution. The
end of that proof is thus to show the existence of such a minimal c̃.

Actually (II.37) and (II.38) have same behaviour, that is there exists a critical
speed under which there is no solution, upper which there are two solutions and at
which there is a unique solution. To see that, take a look at equation (ii) of (II.38), it
is the one of a parabola whom the lowest point remains at (0, f ′ (0) /c̃). We call that
conic Γ∞

c̃,d
. Consider now (i) of (II.38). One easily may see that it is represented in the

(β, α̃) plane by the curve Γ∞
c̃,D

:= Γc̃,D |D=1 defined in section II.6.

If c̃ is close to 0 then

• Γ∞
c̃,d

lies above the line α̃ = f ′ (0) /c̃ which is as large as one wants, and

• Γ∞
c̃,D

lies bellow the line α̃ = 1
2D

(
c̃+
√
c̃2 + 4µD

)
which is as small as one wants,
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hence Γ∞
c̃,d

cannot cross Γ∞
c̃,D

as it is drawn on the left of figure (F36 ).

If c̃ tends to ∞ then

• the lowest point of the parabola Γ∞
c̃,d

(which is (0, f ′ (0) /c̃)) tends to (0, 0), and

• the intersection of Γ∞
c̃,D

with the vertical axis (which is (0, c̃)) tends to (0,∞),

whence Γ∞
c̃,d

have to cross Γ∞
c̃,D

at least once as it is shown on the right of figure (F36 ).
Therefore, thanks to the two cases bellow and by a convexity argument, there is a

unique well-chosen c̃ such that the curves Γ∞
c̃,d

and Γ∞
c̃,D

are tangent and thus intersects
exactly once as it is illustrated in the middle of figure (F36 ).

Figure F36 – Illustration of the three possible cases for system (II.38) which is the
D-asymptotic system (II.37).

According to the notations in the statement of the theorem, call λ that “well-chosen c̃ ”;
in that way λ is the limit as D →∞ of C̃∗ def= C∗/

√
D , that completes the proof of the

theorem. 2

We end that section by numerically checking the result given by theorem (II.36).
One actually can assess with a good accuracy the value of C∗ = C∗ (µ, d,D) thanks to
a dichotomous method for the function ϕ (c, β) := α−d (c, β)− α+

D (c, β).
1 Take C > 0 large enough to that we are sure that Γc,d and Γc,D intersect twice, and
c = CKPP.
2 Then the dichotomous loop is the following (n ∈ N∗ denote the loop number):

• take cn the average of c and C;

• if ϕ (cn, • ) remains positive for • ∈
[
0; 1

2d

√
c2
n − C2

KPP

]
, then replace c by cn;

• else replace C by cn.
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3 Repeat step 2 until getting the wanted accuracy. Note the sequence (cn)n∈N∗
converges exponentially up to C∗ thanks to the following equality

|cn+1 − C∗| ≤
C

2n .

Finally, in order to numerically check theorem 36, we just have to plot (D,C∗ (µ, d,D))
in a “log/log” scale. Because, as asserts the theorem, C∗ D→∞∼ λ

√
D , we should observe

that the points are aligned along a line parallel to y = x/2.
For µ = d = 1 fixed, the method given above provides some conclusive result:

Figure F37 – Numerical testing of theorem 36 as µ = d = 1. Each represents an
assessment of C∗.
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PART III

Research on the Field-Road space RN
+

We are willing in this part to induce a weak Allee effect on the reaction f of the
Field-Road model proposed by Berestycki et al. in [4]:

∂tu−D∂xxu = v (t, x, 0)− µu (t, x, 0) ∈ (0;∞)×R
∂tv − d∆v = f (v) (t, x, y) ∈ (0;∞)× F
−d∂yv (t, x, 0) = µu (t, x)− v (t, x, 0) (t, x, 0) ∈ (0;∞)×R.

(III.1)

More precisely, one would like to take, instead of a logistic reaction as done in [4], a
monostable degenerate one, that is

f (v) = v1+p (1− v)

where p denotes a positive constant. Note p = 0 returns a logistic reaction.
We have mentioned in section I.5 a few words about monostable degenerate

Reaction-Diffusion equations in the whole space RN with the Aronson-Weinberger’s
theorem 23 (a) whom the proof (b) is mainly based on the Fujita’s observation in [7]
which is the following: the solution of the semi-linear R-D Cauchy problem{

∂tv = d∆v + v1+p (t,X) ∈ (0;∞)× RN

v (0, X) = v0 (X) ≥ 0 X ∈ RN

is global and extincts if p > pF
def= 2/N and blows-up in finite time if p ≤ pF .

That Fujita’s exponent pF derives actually from the L∞ rate of decrease of the
heat kernel K on RN :

‖K (t, • )‖L∞(RN ) ≤
C

tN/2
.

Because the heat kernel does not remain the same when space and boundary conditions
are changed, we have to work on that aspect in order to obtain a better understanding
of it in the case of the Field-Road space RN

+ . When we shall able to assess the L∞
decay rate of the Road-Field heat kernel, it is expected that it helps us to determine
some Field-Road Fujita’s exponent with the ambition to draw up an analogous result
as Aronson-Weinberger’s theorem 23 in the Field-Road framework.

a One recalls that this theorem gives a threshold power pF
def= 2/N splitting systematic (p ≤ pF )

and non-systematic (p > pF ) Hair Trigger Effect.
b That is not given in this report but may be found in [2].
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III.1 Heat kernel in the half-space R+

We work here in one dimension – a generalisation to the N -dimensional case shall be
done in the next section. One considers for bounded and non-negative u0 : R∗+ → R+
the heat equation on the half space R∗+ provided with initial datum u0 and Robin
boundary conditions:

∂tu = ∂xxu (t, x) ∈ (0;∞)× R∗+
αu (t, 0)− (1− α) ∂xu (t, 0) = 0 t ∈ (0;∞)
u (0, x) = u0 (x) x ∈ R∗+

(III.2)

where α is a real number in [0; 1] and the diffusion coefficient d has been chosen, thanks
to some time rescaling, equal to 1.

• Neumann α = 0 provides some Neumann boundary conditions: all individuals
hitting the frontier x = 0 re-bounce inside the domain.

• Dirichlet α = 1 provides some Dirichlet boundary conditions: all individuals
hitting the frontier x = 0 are instantly dead.

• Robin 0 < α < 1 provides a mix between Dirichlet and Neumann boundary
conditions which are called Robin boundary conditions (c) : an α-proportion of the
individuals hitting the frontier x = 0 are killed and the others re-bounce inside
the domain.

We are now seeking to find the α-Robin-R∗+-heat kernel Kα = Kα (t, x, y) which
shall provide the solutions of Cauchy problem (III.2) for these three different boundary
conditions. Note however that the method we shall use to treat the Robin case does not
require α 6= 0; but we are willing to do the Neumann and Dirichlet cases independently
because it is an easier and formative way to approach the problem.

Each of these three methods are based on the section 3 of the book of Strauss
[19] whom reasoning is the following:

1 one expands the initial datum u0 on the whole space R in a way which is specific
to the case we treat,

2 one solves the problem in the whole space R for that new expanded initial datum
by convoluing the latter to the R-heat kernel,

3 one cuts the obtained solution at x = 0 and only take the positive part.

For each case we shall furthermore assess the L∞ (R) norm of the function
Kα (t, • , y) whom we want to get a control of the shape c/tk. We expect, because
the individuals leakage is all the more important as α is close to 1, that k = k (α) is
increasing (in the broadest sense) with respect to α.

c One may also find “Fourier boundary conditions”
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III.1.1 Neumann boundary conditions

This case is the simplest of the three: one takes ũ0 the even-extension of u0 , that is

ũ0 (x) :=
{
u0 (x) if x ≥ 0,
u0 (−x) otherwise.

Note u0 may not satisfies the Neumann boundary condition at x = 0; in that case ũ0
cannot be smoother than C0 in a vicinity of zero. However,
Proposition 38
Let ũ = ũ (t, x) be the solution of ∂tũ = ∆ũ starting from ũ0, then for all t > 0, ũ is
derivable at x = 0 and ∂xũ (t, 0) = 0.

The smoothness result given by that proposition is not surprising and comes from
the regularizing effect of the R-heat kernel we have sawn in section I.2. The main
contribution provided is then the horizontal slope of ũ for all positive time at x = 0.
That’s convenient because we just have to restrict ũ to {x > 0} in order to get a solution
to problem (III.2).

Proof (Proposition 38)
The aim of that proof is therefore showing that ∂xũ (t, 0) = 0 for all t > 0; and because
ũ (t, • ) is smooth, it is sufficient to prove that ũ (t, • ) remains even like its initial datum.

ũ (t,−x) =
∫
R
K (t,−x− y) ũ0 (y) dy

take z = −y,

ũ (t,−x) =
∫
R
K (t, z − x) ũ0 (−z) dz

remind that K (t, • ) and ũ0 are even,

ũ (t,−x) =
∫
R
K (t, x− z) ũ0 (z) dz

= ũ (t, x) .

Hence the proof is achieved. 2

Take now u := ũ|x>0, then u is a solution of (III.2) with α = 0.

Remark. Uniqueness may be obtained thanks to the comparison principle.

We try now to find the 0-Robin-R∗+-heat kernel, i.e. a fundamental solution for
problem (III.2), otherwise said, we aim to reach a function K0 = K0 (t, x, y) such that
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one can express u under the integral form

u (t, x) =
∫ ∞

0
K0 (t, x, y)u0 (y) dy.

Let’s try that:

u (t, x) =
∫
R
K (t, x− y) ũ0 (y) dy

=
∫ 0

−∞
K (t, x− y) ũ0 (y) dy +

∫ +∞

0
K (t, x− y)u0 (y) dy

pose z = −y in first integral,

u (t, x) =
∫ +∞

0
K (t, x+ z) ũ0 (−z) dz +

∫ +∞

0
K (t, x− y)u0 (y) dy

remind ũ0 is even (and recall z by y),

u (t, x) =
∫ +∞

0
K (t, x+ y)u0 (y) dy +

∫ +∞

0
K (t, x− y)u0 (y) dy

finally, bringing the both integrals in one single,

u (t, x) =
∫ ∞

0
[K (t, x− y) +K (t, x+ y)]︸ ︷︷ ︸

let us call that K0(t,x,y).

u0 (y) dy

To conclude that case, we look at the L∞ (R+) norm of the kernel K0 (t, • , y):

‖K0 (t, • , y)‖L∞(R+) ≤
c

t1/2
,

where c only depends on the diffusion coefficient d.

Figure F38 – Illustration of the steps allowing to find the solution of the heat
equation in the half space R∗+ with Neumann boundary conditions.
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III.1.2 Dirichlet boundary conditions

One takes now ũ0 the odd-extension of u0 , that is

ũ0 (x) :=
{
u0 (x) if x ≥ 0,
−u0 (−x) otherwise.

Note u0 may not be zero at x = 0; in that case ũ0 cannot be continuous zero. However,
Proposition 39
Let ũ = ũ (t, x) be the solution of ∂tũ = ∆ũ starting from ũ0, then for all t > 0,
ũ (t, 0) = 0.

The proof of that proposition consists in the same reasoning than the Neumann
case:

Proof (Proposition 39)
Because ũ (t, • ) is smooth, in order to show that ũ (t, • ) is zero at x = 0, it is sufficient
to prove that ũ (t, • ) remains odd like its initial datum.

ũ (t,−x) =
∫
R
K (t,−x− y) ũ0 (y) dy

take z = −y,

ũ (t,−x) =
∫
R
K (t, z − x) ũ0 (−z) dz

remind that K (t, • ) is even and ũ0 is odd,

ũ (t,−x) = −
∫
R
K (t, x− z) ũ0 (z) dz

= −ũ (t, x) .

Hence the proof is achieved. 2

Take now u := ũ|x>0, then u is a solution of (III.2) with α = 1.

Remark. Uniqueness may again be obtained thanks to the comparison principle.

We aim now to find the 1-Robin-R∗+-heat kernel:

u (t, x) =
∫
R
K (t, x− y) ũ0 (y) dy

=
∫ 0

−∞
K (t, x− y) ũ0 (y) dy +

∫ +∞

0
K (t, x− y)u0 (y) dy
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pose z = −y in first integral,

u (t, x) =
∫ +∞

0
K (t, x+ z) ũ0 (−z) dz +

∫ +∞

0
K (t, x− y)u0 (y) dy

remind ũ0 is odd (and recall z by y),

u (t, x) = −
∫ +∞

0
K (t, x+ y)u0 (y) dy +

∫ +∞

0
K (t, x− y)u0 (y) dy

finally, bringing the both integrals in one single,

u (t, x) =
∫ ∞

0
[K (t, x− y)−K (t, x+ y)]︸ ︷︷ ︸

let us call that K1(t,x,y).

u0 (y) dy

Finally, looking at the L∞ (R+) norm of the kernel K1 (t, • , • ) requires further
considerations than for the Neumann case.
Proposition 40
1 For all (t, x, y) ∈ R∗+ × R+ × R+, the amount K1 (t, x, y) remains positive.

2 There exists some real positive constant c depending only on d such that, for all
t > 0,

‖K1 (t, • , y)‖L∞(R+) ≤
cy

t
.

Proof (Proposition 40) 1
Let’s prove that K1 is positive: let t be positive and x, y non-negative,

K1 (t, x, y) = K (t, x− y)−K (t, x+ y)

= 1
(4πt)1/2

(
e−

(x−y)2
4t − e−

(x+y)2
4t

)

= e−
x2+y2

4t

(4πt)1/2︸ ︷︷ ︸
>0

(
e
xy
2t − e−

xy
2t
)

︸ ︷︷ ︸
>0

. 2

Proof (Proposition 40) 2

Take ϕ (y) := e−
(x−y)2

4t ; in that way,

K1 (t, x, y) = 1
(4πt)1/2 (ϕ (y)− ϕ (−y)) .
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We assess ϕ′ (y) to get a control on it:

ϕ′ (y) = 2 (x− y)
4t e−

(x−y)2
4t

= 1√
t

x− y
2
√
t
e
−
(
x−y
2
√
t

)2

pose θ (z) := ze−z
2 ,

ϕ′ (y) = 1√
t
· θ
(
x− y
2
√
t

)

≤ 1√
t
· ‖θ‖L∞

= c√
t
.

By applying now the Mean Value Theorem to function ϕ, one gets (for some ξ ∈ (−y; y))

|ϕ (y)− ϕ (−y)| = 2yϕ′ (ξ)

≤ c1y√
t
.

Whence

K1 (t, x, y) = 1
(4πt)1/2

(
e−

(x−y)2
4t − e−

(x+y)2
4t

)

= 1
(4πt)1/2 (ϕ (y)− ϕ (−y))

≤ c2y

t
.

The desired result follows then from the last equality. 2

Figure F39 – Illustration of the steps allowing to find the solution of the heat
equation in the half space R∗+ with Dirichlet boundary conditions.
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III.1.3 Robin boundary conditions

Extend u0 and express the solution u

Let α ∈ [0; 1), we have now to find the an extension of u0 for the α-Robin boundary
conditions. The common points of the two previous cases was that u0 was extended
such that

• ũ0
′ was odd in the Neumann case,

• ũ0 was odd in the Dirichlet case.

A natural try for the Robin case is therefore choosing ũ0 such that

αũ0 − (1− α) ũ0
′ is odd.

Let us state A := α/ (1− α) so that the latter expanding condition becomes

Aũ0 − ũ0
′ is odd.

That proposition is then equivalent to all the equalities which follow:

Aũ0 (x)− ũ0
′ (x) = − (Aũ0 (−x)− ũ0

′ (−x))

e−Ax (ũ0
′ (x)− Aũ0 (x)) = e−Ax (Aũ0 (−x)− ũ0

′ (−x))(
e−Axũ0 (x)

)′
= e−Ax (Aũ0 (−x)− ũ0

′ (−x))

ũ0 (x) = CeAx + eAx
∫ x

0
e−As (Aũ0 (−s)− ũ0

′ (−s)) ds,

where C is a constant which should be chosen equal to u0 (0) in order to ũ0 keeps its
continuity at x = 0(d) . Thereby we pose

ũ0 :=
{
u0 (x) if x ≥ 0,
u0 (0) eAx + eAx

∫ x
0 e
−As (Au0 (−s)− u′0 (−s)) ds otherwise

and we reach the solution of the heat equation starting from the initial datum ũ0:

ũ (t, x) :=
∫ +∞

−∞
K (t, x− y) ũ0 (y) dy.

On can by now announce an analogous result as those for the Neumann (proposition
38) and Dirichlet (proposition 39):
Proposition 41
For all t > 0, ũ is derivable at x = 0 and,

Aũ (t, 0)− ∂xũ (t, 0) = 0.

d Note that the Dirichlet case was the only for which ũ0 might not be continuous.
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Proof (Proposition 41)
The proof follows the spirit as the Dirichlet’s one: we make sure that the oddness of
the function Aũ0 − ũ0

′ spreads on ũ for all positive time; then because ũ and ∂xũ are
smooth, Aũ0 − ũ0

′ has to be zero at x = 0, that’s the wanted result. Let thus prove
that:

Aũ (t,−x)− ∂xũ (t,−x) =
∫
R
K (t, y)Aũ0 (−x− y) dy −

∫
R
K (t, y) ∂x (ũ0 (−x− y)) dy

=
∫
R
K (t, y) [Aũ0 (−x− y)− ∂x (ũ0 (−x− y))] dy

=
∫
R
K (t, y) [(Aũ0 − ∂x (ũ0)) (−x− y)] dy

take z = −y,

Aũ (t,−x)− ∂xũ (t,−x) =
∫
R
K (t,−z) [(Aũ0 − ∂x (ũ0)) (z − x)] dz

remind that Aũ0 − ũ0
′ is odd, K (t, • ) is even and recall z by y,

Aũ (t,−x)− ∂xũ (t,−x) = −
∫
R
K (t,−y) [(Aũ0 − ∂x (ũ0)) (x− y)] dy

= −
(∫

R
K (t, y)Aũ0 (x− y) dy −

∫
R
K (t, y) ∂x (ũ0 (x− y)) dy

)
= − (Aũ (t,−x)− ∂xũ (t,−x)) .

And so the proof is achieved. 2

Now we own the solution ũ on the whole space R, it just remains to take its
restriction to the half positive space to get the solution we want.
Remark. Once again, uniqueness can be obtained thanks to the comparison principle.

Find the heat kernel

We are now seeking to the α-Robin-R∗+-heat kernel Kα which may be a little bit harder
to find than in the Neumann and Dirichlet cases.

u (t, x) =
∫ +∞

−∞
K (t, x− y) ũ0 (y) dy

=
∫ +∞

0
K (t, x− y) ũ0 (y) dy +

∫ 0

−∞
K (t, x− y) ũ0 (y) dy

=
∫ +∞

0
K (t, x− y)u0 (y) dy +

∫ +∞

0
K (t, x+ y) ũ0 (−y) dy︸ ︷︷ ︸
call that integral I(t,x).
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Let’s work on the amount I:

I (t, x) =
∫ +∞

0
K (t, x+ y)

(
u0 (0) e−Ay + e−Ay

∫ −y
0

e−As (Au0 (−s)− u′0 (−s)) ds
)

dy

=
∫ +∞

0
K (t, x+ y)

(
u0 (0) e−Ay − e−Ay

∫ y

0
eAs (Au0 (s)− u′0 (s)) ds

)
dy

=
∫ +∞

0
K (t, x+ y)

u0 (0) e−Ay − Ae−Ay
∫ y

0
eAsAu0 (s) ds+ e−Ay

∫ y

0
eAsu′0 (s) ds︸ ︷︷ ︸

IBP

 dy

=
∫ +∞

0
K (t, x+ y)

(
u0 (0) e−Ay − Ae−Ay

∫ y

0
eAsAu0 (s) ds

+ u0 (y)− u0 (0) e−Ay − Ae−Ay
∫ y

0
eAsu0 (s) ds

)
dy

=
∫ +∞

0
K (t, x+ y)

(
u0 (y)− 2Ae−Ay

∫ y

0
eAsu0 (s) ds

)
dy.

Thus we get

u (t, x) =
∫ +∞

0

Recognize here K0(t,x,y)︷ ︸︸ ︷
(K (t, x− y) +K (t, x+ y))u0 (y) dy

− 2A
∫ +∞

0

(
K (t, x+ y) e−Ay

∫ y

0
eAsu0 (s) ds

)
dy.

In the second term of the latter sum, one can check that

K (t, x+ y) e−Ay = 1
(4πt)1/2 exp

(
−(y + (2tA+ x))2 − (4tAx+ 4d2t2A2)

4t

)

then, by letting γ (z) := e−z
2 , we have

K (t, x+ y) e−Ay = eAx+tA2

(4πt)1/2 · γ
(
y + (2tA+ x)

2
√
t

)
.

Therefore,

u (t, x) =
∫ +∞

0
K0 (t, x, y)u0 (y) dy

− 2AeAx+tA2

(4πt)1/2

∫ +∞

0

(
γ

(
y + (2tA+ x)

2
√
t

)∫ y

0
eAsu0 (s) ds

)
dy︸ ︷︷ ︸

call that I1(t,x), we shall do an IBP on it.

We pose Γ (z) := −
∫+∞
z γ (s) ds; in that way, Γ is a primitive of γ which is zero when z

tends to +∞ and by integrating by part, as specified just above,

I1 (t, x) = −2
√
t
∫ +∞

0
Γ
(
y + 2tA+ x

2
√
t

)
eAyu0 (y) dy.

90



III. Research on the Field-Road 1. Heat kernel in R+

So u becomes

u (t, x) =
∫ +∞

0
K0 (t, x, y)u0 (y) dy+ 4A

√
t

(4πt)1/2

∫ +∞

0
eAx+tA2+Ay · Γ

(
y + 2tA+ x

2
√
t

)
u0 (y) dy︸ ︷︷ ︸

call that I2(t,x)

.

Working on I2:

I2 (t, x) =
∫ +∞

0
eAx+tA2+Ay · exp

−(y + 2tA+ x

2
√
t

)2


· Γ
(
y + 2tA+ x

2
√
t

)
· exp

+
(
y + 2tA+ x

2
√
t

)2
u0 (y) dy

=
∫ +∞

0
exp

(
−(x+ y)2

4t

)
· Γ
γ

(
y + 2tA+ x

2
√
t

)
u0 (y) dy.

We finally get

u (t, x) =
∫ +∞

0

(
K0 (t, x, y) + 4A

√
t K (t, x+ y) Γ

γ

(
y + 2tA+ x

2
√
t

))
u0 (y) dy,

consequently we have found the α-Robin-R∗+-heat kernel:

Kα(t, x, y) = K0 (t, x, y) + 4A
√
t K (t, x+ y) Γ

γ

(
y + 2tA+ x

2
√
t

)
.

We take the liberty of changing a little bit its form:

Kα(t, x, y) = K (t, x− y) +K (t, x+ y) + 4A
√
t K (t, x+ y) Γ

γ

(
y + 2tA+ x

2
√
t

)
= K (t, x− y)−K (t, x+ y) + 2K (t, x+ y)

+ 4A
√
t K (t, x+ y) Γ

γ

(
y + 2tA+ x

2
√
t

)
.

Thereby,

Kα(t, x, y) = K1 (t, x, y) + 2K (t, x+ y)
(

1 + 2A
√
t

Γ
γ

(
y + 2tA+ x

2
√
t

))
.

L∞ control on the heat kernel

From here onwards, c, c1, c2, etc. denote some constants depending only on A and and
which can be different from one line to another.
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To conclude that section, we therefore have to find the L∞ rate of decrease of Hα.
By looking above at Kα and reminding that K1 is controlled by cy/t, we have then to
work on the second half of the sum, that is the amount

G (t, x, y) := K (t, x+ y)
(

1 + 4A
√
t

Γ
γ

(
y + 2tA+ x

2
√
t

))

to know the L∞ rate of decrease of Hα. Notice we have Γ (z) =
√
π
2 (Erf (z)− 1), and

Γ
γ

(z) = −1
2

(1
z
− 1

2z3 + o
( 1
z3

))
as z →∞.

Whence, in particular, if z0 is taken large enough, we get for all z ≥ z0,

− 1
2z + 1

8z3 ≤
Γ
γ

(z) ≤ − 1
2z + 3

8z3 .

Hence there exists t0 > 0 also large enough such that for all t ≥ t0, all x ≥ 0 and all
y ≥ 0,

Γ
γ

(
y + 2tA+ x

2
√
t

)
≤ −1

2
2
√
t

2tA+ x+ y
+ 3

8

(
2
√
t

2tA+ x+ y

)3

≤ −
√
t

2tA+ x+ y
+ 3

8 (t)3/2A3
.

Using that control on Kα, one obtains

Kα (t, x, y) = K1 (t, x, y) + 2G (t, x, y)

≤ cy

t
+ 2K (t, x+ y)

(
1 + 2A

√
t

(
−

√
t

2tA+ x+ y
+ 3

8 (t)3/2A3

))

≤ cy

t
+ 2K (t, x+ y)

(
1− 2tA

2tA+ x+ y
+ 3

4tA2

)

≤ cy

t
+ 2K (t, x+ y)

(
x+ y

2tA+ x+ y
+ 3

4tA2

)

≤ cy

t
+ 1√

πt

x+ y

2tA+ x+ y
e−

(x+y)2
4t + 3

4
√
π (t)3/2A2

= cy

t
+ c1√

t

x+ y

2tA+ x+ y
e−

(x+y)2
4t︸ ︷︷ ︸

Call that (♠).

+ c2

t3/2
.

There are two possible cases depending on the control which we shall obtain on (♠):

• either (♠) ≤ c/t` with 0 ≤ ` < 1/2, and then Kα would be controlled by c/t 1
2 +`,

• or (♠) ≤ c/t` with ` ≥ 1/2, and then Kα would be controlled by (cy + c1) /t.
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The sequence consists then in controlling (♠). Let us pose

m (t) := sup
z≥0

(
z

2tA+ z
e−

z
4t

)
︸ ︷︷ ︸
and call that ψ(z).

One assess the first derivative of ψ:

ψ′ (z) = −
e−

z2
4t

call that ϕ(z)︷ ︸︸ ︷(
z3 + 2tAz2 − 4 (t)2A

)
2t (2tA+ z)2 .

We easily see that ψ′ and ϕ have opposite signs. One has ϕ′ (z) = z (3z + 4tA) which
remains non-negative when z is non-negative. Hence there exists some z∗ = z∗ (t) such
that m (t) = ψ (z∗) as it can be seen from figure (F40 ). Remark that z∗ is the unique
real root of the polynomial ϕ (z) and by seeing that, for all positive t,

ϕ
(√

2t
)

= (2t)3/2 > 0,

we actually have
m (t) = max

0≤z≤
√

2t

(
z

2tA+ z
e−

z
4t

)
.

Figure F40 – Study of the ψ function: m (t) is actually a maximum achieved in z∗.

Consequently, we can now control the amount m (t) like this:

m (t) = max
0≤z≤

√
2t

(
z

2tA+ z
e−

z
4t

)
≤ max

0≤z≤
√

2t

(
z

2tA+ z

)
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see that ∂z
(

z
2tA+z

)
= 2tA

(2tA+z)2 > 0, whence

m (t) ≤
√

2t
2tA+ 2t

≤
√

2t
2tA

= 1√
2t A

= c√
t
.

Therefore (♠) is controlled by c√
t

so we get

Kα (t, x, y) ≤ cy

t
+ c1

t
+ c2

t3/2

then, for t large enough,

Kα (t, x, y) ≤ cy

t
+ c1

t
+ c2

t

whence
‖Kα (t, • , y)‖L∞ ≤

cy + c1

t
.

III.2 Heat kernel in the half-space RN
+

That section consists in a generalisation of the previous one in the N -dimensional case
(N ≥ 1). In the sequence, the set RN

+ denotes the upper half space RN−1 × R∗+ and a
generic point x ∈ RN shall be written

x = (X, xN) ∈ RN−1 × R.

Figure F41 – Representation of the generic point x = = ( , ) = (X, xN) in the
half spaces RN

+ for N ∈ {1, 2, 3}.
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One considers for non-negative valued u0 ∈ L1
(
RN

+

)
∩L∞

(
RN

+

)
the heat equation

on the half space RN
+ provided with initial datum and Robin boundary conditions:

∂tu = ∆u (t, x) ∈ (0;∞)× RN
+

αu (t,X, 0)− (1− α) ∂xNu (t,X, 0) = 0 (t,X) ∈ (0;∞)× RN−1

u (0, x) = u0 (x) x ∈ RN
+

(III.3)

where α is a real number in [0; 1]. We are now going to do the same reasoning as which
we have made in the previous section, that why a bit less details shall be given. We are
thereby aiming to reach the α-Robin-RN

+ -heat kernel Kα = Kα (t, x, y) which gives the
solution of (III.3) under the shape

u (t, x) =
∫
RN+
Kα (t, x, y)u0 (y) dy.

Before starting we introduce the new notation A . B which means that there is
a positive constant c = c (N, d, α) such that A ≤ cB and we recall that the RN -heat
kernel in the whole space is given by

K (t, x) def= 1
(4πt)N/2

exp
(
−|x|

2

4t

)
,

or even, express with the notations given in the beginning of that section,

K (t,X, xn) = 1
(4πt)N/2

exp
(
−|X|

2 + x2
N

4t

)
.

III.2.1 Neumann boundary conditions

Take here α = 0 to get some Neumann boundary conditions in (III.3).

Proposition 42 (Heat equation in RN
+ with Neumann BC)

1 The 0-Robin-RN
+ -heat kernel is given by

K0 (t, x, y) = K (t,X − Y, xN − yN) +K (t,X − Y, xN + yN)

2 Furthermore, one has the following L∞ control on K0 (t, • , y):

‖K0 (t, • , y)‖L∞(RN+ ) .
1
tN/2

.

Proof (Proposition 42) 1
Let ũ0 denote the even extension of u0 with respect to the variable xN beyond the
hyperplane {xN = 0}, namely

ũ0 (X, xN) :=
{
u0 (X, xN) if xN > 0
u0 (X,−xN) if xN < 0.
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We set ũ = ũ (t,X, xN) the solution of ∂tũ = ∆ũ in the whole RN starting from
the initial datum ũ0; take then for u the restriction of ũ to the upper half space,
i.e. u = ũ|xN>0. We assert that u is the solution of (III.3) with α = 0. Indeed, we just
have to check the boundary condition:

ũ (t,X,−xN) =
∫
RN
K (t,X − Y,−xN − yN) ũ0 (Y, yN) dY dyN

=
∫
RN
K (t,X − Y,−xN + zN) ũ0 (Y,−zN) dY dzN

remind that K and ũ0 are even with respect to their last variable,

=
∫
RN
K (t,X − Y, xN − zN) ũ0 (Y, zN) dY dzN

= ũ (t,X, xN) .

Hence, ũ is even with respect to xN that’s why the boundary condition ∂xNu (t,X, 0) = 0
is verified. We assess now the fundamental solution K0. We have, for all t > 0 and all
x ∈ RN

+ ,

u (t, x) =
∫
RN
K (t, x− y) ũ0 (y) dy

=
∫
RN+
K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫
RN−
K (t,X − Y, xN − yN) ũ0 (Y, yN) dY dyN

=
∫
RN+
K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫
RN+
K (t,X − Y, xN + zN) ũ0 (Y,−zN) dY dzN

remind that ũ0 is even with respect to its last variable,

=
∫
RN+
K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫
RN+
K (t,X − Y, xN + zN)u0 (Y, zN) dY dzN

=
∫
RN+

[K (t,X − Y, xN − yN) +K (t,X − Y, xN + yN)]︸ ︷︷ ︸
call that K0(t,x,y). 2

u0 (Y, yN) dY dyN

Proof (Proposition 42) 2
That control easily follows from the expression of K0. 2
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III.2.2 Dirichlet boundary conditions

Take here α = 1 to get some Dirichlet boundary conditions in (III.3).

Proposition 43 (Heat equation in RN
+ with Dirichlet BC)

1 The 1-Robin-RN
+ -heat kernel is given by

K1 (t, x, y) = K (t,X − Y, xN − yN)−K (t,X − Y, xN + yN)

2 Furthermore, one has the following L∞ control on K1 (t, • , y):

‖K1 (t, • , y)‖L∞(RN+ ) .
yN

t
N+1

2
.

Proof (Proposition 44) 1
Let ũ0 denote the odd extension of u0 with respect to the variable xN beyond the
hyperplane {xN = 0}, namely

ũ0 (X, xN) :=
{
u0 (X, xN) if xN > 0
−u0 (X,−xN) if xN < 0.

We set ũ = ũ (t,X, xN) the solution of ∂tũ = ∆ũ in the whole RN starting from
the initial datum ũ0; take then for u the restriction of ũ to the upper half space,
i.e. u = ũ|xN>0. We assert that u is the solution of (III.3) with α = 1. Indeed, we just
have to check the boundary condition:

ũ (t,X,−xN) =
∫
RN
K (t,X − Y,−xN − yN) ũ0 (Y, yN) dY dyN

=
∫
RN
K (t,X − Y,−xN + zN) ũ0 (Y,−zN) dY dzN

remind that K is even and ũ0 is odd with respect to their last variable,

= −
∫
RN
K (t,X − Y, xN − zN) ũ0 (Y, zN) dY dzN

= −ũ (t,X, xN) .

Hence, ũ is odd with respect to xN that’s why the boundary condition u (t,X, 0) = 0 is
verified. We assess now the fundamental solution K1. We have, for all t > 0 and all
x ∈ RN

+ ,

u (t, x) =
∫
RN
K (t, x− y) ũ0 (y) dy

=
∫
RN+
K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫
RN−
K (t,X − Y, xN − yN) ũ0 (Y, yN) dY dyN
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=
∫
RN+
K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫
RN+
K (t,X − Y, xN + zN) ũ0 (Y,−zN) dY dzN

remind that ũ0 is odd with respect to its last variable,

=
∫
RN+
K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

−
∫
RN+
K (t,X − Y, xN + zN)u0 (Y, zN) dY dzN

=
∫
RN+

[K (t,X − Y, xN − yN)−K (t,X − Y, xN + yN)]︸ ︷︷ ︸
call that K1(t,x,y). 2

u0 (Y, yN) dY dyN

Proof (Proposition 44) 2
Take ϕ (yN) := exp

(
− (xN−yN )2

4t

)
; in that way,

K1 (t, x, y) = 1
(4πt)N/2

exp
(
−|X − Y |

2

4t

)
(ϕ (yN)− ϕ (−yN))

≤ 1
(4πt)N/2

(ϕ (yN)− ϕ (−yN)) .

Thanks to the Mean Value Theorem there exists some positive c such that

|ϕ (yN)− ϕ (−yN)| ≤ c · yN√
t
.

Whence for another positive c,

K1 (t, x, y) ≤ c · yN
t
N+1

2
. 2
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III.2.3 Robin boundary conditions

Take here α ∈ [0; 1) to get some Robin boundary conditions in (III.3).

Proposition 44 (Heat equation in RN
+ with Robin BC)

1 The α-Robin-RN
+ -heat kernel is given by

Kα (t, x, y) = K1 (t, x, y) + 2K (t,X − Y, xN + yN)

×
(

1 + 2A
√
t

Γ
γ

(
yN + 2tA+ xN

2
√
t

))
.

2 Furthermore, one has the following L∞ control on Kα (t, • , y):

‖Kα (t, • , y)‖L∞(RN+ ) .
1 + yN

t
N+1

2
.

Proof (Proposition 42) 1
Let α be in [0; 1) and state A = α/ (1− α). We moreover suppose in the sequence that
the initial datum u0 is derivable following the xN variable.
Step 1: extend u0 in the whole RN to solve the half space problem.
We extend u0 beyond the hyperplane {xN = 0} in a new initial datum ũ0 = ũ0 (X, xN)
in such a way that the function

Aũ0 − ∂xN ũ0 is odd with respect to the xN variable.

One therefore gets the following equivalent equalities:

Aũ0 (X, xN)− ∂xN ũ0 (X, xN) = − (Aũ0 (X,−xN)− ∂xN ũ0 (X,−xN))

e−AxN (∂xN ũ0 (X, xN)− Aũ0 (X, xN)) = e−AxN (Aũ0 (X,−xN)− ∂xN ũ0 (X,−xN))

∂xN
(
e−AxN ũ0 (X, xN)

)
= e−AxN (Aũ0 (X,−xN)− ∂xN ũ0 (X,−xN))

ũ0 (X, xN) = CeAxN + eAxN
∫ xN

0
e−As (Aũ0 (X,−s)− ∂xN ũ0 (X,−s)) ds,

where C = C (X) is constant with regards to the xN variable and may be chosen equal
to u0 ( • , 0) in order to ũ0 keeps its continuity when xN = 0. Thereby we pose

ũ0 :=
{
u0 (X, xN) if xN ≥ 0,
u0 (X, 0) eAxN + eAxN

∫ xN
0 e−As (Au0 (X,−s)− ∂xNu0 (X,−s)) ds otherwise

and we reach the solution of the heat equation starting from the initial datum ũ0:

ũ (t,X, xN) :=
∫
RN
K (t,X − Y, xN − yN) ũ0 (Y, yN) dY dyN .
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Claim. For all t > 0, Aũ (t,X, 0)− ∂xN ũ (t,X, 0) = 0.

Let’s prove that by showing the oddness (with respect to xN) of Aũ− ∂xN ũ:

Aũ (t,X,−xN)− ∂xN ũ (t,X,−xN)

=
∫
RN
K (t, Y, yN)Aũ0 (X − Y,−xN − yN) dY dyN

−
∫
RN
K (t, Y, yN) ∂xN (ũ0 (X − Y,−xN − yN)) dY dyN

=
∫
RN
K (t, Y, yN)

[
Aũ0 (X − Y,−xN − yN)

− ∂xN (ũ0 (X − Y,−xN − yN))
]
dY dyN

=
∫
RN
K (t, Y, yN)

[
(Aũ0 − ∂xN ũ0) ((X − Y,−xN − yN))

]
dY dyN

take zN = −yN ,

=
∫
RN
K (t, Y,−zN)

[
(Aũ0 − ∂xN ũ0) ((X − Y, zN − xN))

]
dY dzN

remind that Aũ0 − ∂xN ũ0 is odd (with respect to xN) and recall zN by yN ,

= −
∫
RN
K (t, Y,−yN)

[
(Aũ0 − ∂xN ũ0) ((X − Y, xN − yN))

]
dY dyN

finally using that the RN -heat kernel K is even (with respect to xN),

= −
∫
RN
K (t, Y, yN)

[
(Aũ0 − ∂xN ũ0) ((X − Y, xN − yN))

]
dY dyN

= −
∫

RN
K (t, Y, yN)Aũ0 (X − Y,−xN − yN) dY dyN

−
∫
RN
K (t, Y, yN) ∂xN (ũ0 (X − Y,−xN − yN)) dY dyN


= − (Aũ (t,X,−xN)− ∂xN ũ (t,X,−xN)) .

Whence the claimed result. 2 (claim)

One takes now for u the restriction of ũ to the upper half space {xN ≥ 0}, that is,
u = ũ|xN≥0, in that way u is the unique (thanks to the comparison principle) solution
of problem (III.3).
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Step 2: Find the α-Robin-RN
+ -heat kernel Kα.

One has

u (t,X, xN)

=
∫ +∞

−∞

∫
RN−1

K (t,X − Y, xN − yN) ũ0 (Y, yN) dY dyN

=
∫ +∞

0

∫
RN−1

K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫ 0

−∞

∫
RN−1

K (t,X − Y, xN − yN) ũ0 (Y, yN) dY dyN

=
∫ +∞

0

∫
RN−1

K (t,X − Y, xN − yN)u0 (Y, yN) dY dyN

+
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN) ũ0 (Y,−yN) dY dyN︸ ︷︷ ︸
call that integral I(t,X,xN ).

Let’s work on the amount I:

I (t,X, xN) =
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN)
(
u0 (Y, 0) e−AyN

+ e−AyN
∫ −yN

0
e−As (Au0 (Y,−s)− ∂xNu0 (Y,−s)) ds

)
dY dyN

=
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN)
(
u0 (Y, 0) e−AyN

− e−AyN
∫ yN

0
eAs (Au0 (Y, s)− ∂xNu0 (Y, s)) ds

)
dY dyN

=
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN)
(
u0 (Y, 0) e−AyN

− Ae−AyN
∫ yN

0
eAsu0 (Y, s) ds+ e−AyN

∫ yN

0
eAs∂xNu0 (Y, s) ds︸ ︷︷ ︸

IBP

)
dY dyN

=
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN)
(
u0 (Y, 0) e−AyN

− Ae−AyN
∫ yN

0
eAsu0 (Y, s) ds

+ u0 (Y, yN)− u0 (Y, 0) e−AyN − Ae−AyN
∫ yN

0
eAsu0 (Y, s) ds

)
dY dyN

=
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN)
(
u0 (Y, yN)

− 2Ae−AyN
∫ yN

0
eAsu0 (Y, s) ds

)
dY dyN .
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We thus get

u (t,X, xN) =
∫ +∞

0

∫
RN−1

Recognize here K0(t,x,y)...︷ ︸︸ ︷
(K (t,X − Y, xN − yN) +K (t,X − Y, xN + yN))u0 (Y, yN) dY dyN

− 2A
∫ +∞

0

∫
RN−1

K (t,X − Y, xN + yN) e−AyN
(∫ yN

0
eAsu0 (Y, s) ds

)
dY dyN .

In the second term of the latter sum, one can check that

K (t,X − Y, xN + yN) e−AyN =

e−
|X−Y |2

4t

(4πt)N/2
· exp

(
−(yN + (2tA+ xN))2 − (4tAxN + 4d2t2A2)

4t

)

then by letting γ (z) := e−z
2 , we have

K (t,X − Y, xN + yN) e−AyN = e−
|X−Y |2

4t

(4πt)N/2
· exp

(
AxN + tA2

)
γ

(
yN + 2tA+ xN

2
√
t

)
.

Therefore,

u (t,X, xN) =
∫
RN+
K0 (t, x, y)u0 (y) dy − 2AeAxN+tA2

(4πt)N/2

×
∫
RN−1

e−
|X−Y |2

4t

∫ +∞

0

(
γ

(
yN + 2tA+ xN

2
√
t

)∫ yN

0
eAsu0 (Y, s) ds

)
dyN︸ ︷︷ ︸

call that I1(t,X,xN ,Y ), we shall do an IBP on it.

dY

We pose Γ (zN) := −
∫+∞
zN

γ (s) ds; in that way, Γ is a primitive of γ which is zero when
zN tends to +∞ and by integrating by part, as specified just above,

I1 (t,X, xN , Y ) = −2
√
t
∫ +∞

0
Γ
(
yN + 2tA+ xN

2
√
t

)
eAyNu0 (Y, yN) dyN .

So u becomes

u (t,X, xN) =
∫
RN+
K0 (t, x, y)u0 (y) dy + 4A

√
t

(4πt)N/2

×
∫
RN−1

e−
|X−Y |2

4t

∫ +∞

0
eAxN+tA2+AyN · Γ

(
yN + 2tA+ xN

2
√
t

)
u0 (Y, yN) dyN︸ ︷︷ ︸

call that I2(t,y′,xN ).

dY
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Working on I2:

I2 (t, y′, xN) =
∫ +∞

0
eAxN+tA2+AyN · exp

−(yN + 2tA+ xN

2
√
t

)2


× Γ
(
yN + 2tA+ xN

2
√
t

)
· exp

+
(
yN + 2tA+ xN

2
√
t

)2
u0 (Y, yN) dyN

=
∫ +∞

0
exp

(
−(xN + yN)2

4t

)
· Γ
γ

(
yN + 2tA+ xN

2
√
t

)
u0 (Y, yN) dyN .

We finally get

u (t,X, xN) =
∫
RN+

K0 (t, x, y) + 4A
√
t K (t,X − Y, xN + yN)

× Γ
γ

(
yN + 2tA+ xN

2
√
t

)u0 (Y, yN) dY dyN .

consequently we have found the α-Robin-RN
+ -heat kernel:

Kα (t, x, y) = K0 (t, x, y) + 4A
√
t K (t,X − Y, xN + yN) Γ

γ

(
yN + 2tA+ xN

2
√
t

)
.

We take the liberty of changing a little bit its shape:

Kα (t, x, y) = K (t,X − Y, xN − yN) +K (t,X − Y, xN + yN)

+ 4A
√
t K (t,X − Y, xN + yN) Γ

γ

(
yN + 2tA+ xN

2
√
t

)
= K (t,X − Y, xN − yN)−K (t,X − Y, xN + yN) + 2K (t,X − Y, xN + yN)

+ 4A
√
t K (t,X − Y, xN + yN) Γ

γ

(
yN + 2tA+ xN

2
√
t

)
.

Thereby,

Kα (t, x, y) = K1 (t, x, y) + 2K (t,X − Y, xN + yN)
(

1 + 2A
√
t

Γ
γ

(
yN + 2tA+ xN

2
√
t

))
.

Step 3: Show that Kα works also for non-regular u0 ∈ L1
(
RN

+

)
∩ L∞

(
RN

+

)
.

The derivability hypothesis we have done on the initial datum u0 was necessary to find
the α-Robin-RN

+ -heat kernel but the normal derivative of u0 is not involved in the final
expression of u given by

u (t, x) =
∫
RN+
Kα (t, x, y)u0 (y) dy.

103



III. Research on the Field-Road 2. Heat kernel in RN
+

This being due to an integration by part we have done above allowing Kα to hold
implicitly the normal derivative instead of u0. Therefore, the formula giving u by integrat-
ing Kα against u0 does not require further hypothesis than u0 ∈ L1

(
RN

+

)
∩ L∞

(
RN

+

)
.

That’s why we would be happy if our α-Robin-RN
+ -heat kernel does also work for such

initial datum.
We first check that Kα verifies the Robin boundary condition on ∂RN

+ : we call

θ := yN + 2tA+ xN

2
√
t

and θ0 := yN + 2tA
2
√
t

,

some easy but long computations show that

Kα (t, (X, 0) , (Y, yN)) = K (t,X − Y, yN)
(
2 + 4A

√
t
) Γ
γ

(θ0) ,

∂xNKα (t, (X, xN) , (Y, yN)) = −xN − yN2t K (t,X − Y, xN − yN)

− xN + yN
2t K (t,X − Y, xN + yN)

+K (t,X − Y, xN + yN)
[
2A− 4

√
t A2 Γ

γ
(θ)
]
,

∂xNKα (t, (X, 0) , (Y, yN)) = K (t,X − Y, yN)
[
2A− 4

√
t A2 Γ

γ
(θ0)

]
.

Hence one sees that

AKα (t, (X, 0) , (Y, yN))− ∂xNKα (t, (X, 0) , (Y, yN)) = 0

that is Kαverifies Robin boundary conditions on ∂RN
+ for all positive time. Let now

u0 ∈ L1
(
RN

+

)
∩ L∞

(
RN

+

)
and pose

u (t, x) =
{
u0 (x) if t = 0∫
RN+
Kα (t, x, y)u0 (y) dy. if t > 0.

It can be verified from one part that ∂tu = ∆u for all (t, x) ∈ R∗+ × RN
+ , and from

another part, we have

Au (t, (X, 0))−∂xNu (t, (X, 0))

=
∫
RN+

[AKα (t, (X, 0) , (Y, yN))− ∂xNKα (t, (X, 0) , (Y, yN))]u0 (y) dy

= 0.

Therefore, the function is well the solution of problem (III.3) starting from the not-
necessary-regular initial datum u0. 2
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Proof (Proposition 42) 2
From here onwards, c, c1, c2, etc. denote some constants depending only on N , α and
d and which can be different from one line to another. By looking at Kα expression
assessed in first part of the proof and reminding that K1 is controlled by cyN/t

N+1
2 , we

therefore have to work on the second half of Kα, that is

G (t, x, y) := K (t,X − Y, xN + yN)
(

1 + 2A
√
t

Γ
γ

(
yN + 2tA+ xN

2
√
t

))

to know the L∞ rate of decrease of Kα. Notice we have Γ (zN) =
√
π
2 (Erf (zN)− 1),

and
Γ
γ

(zN) = −1
2

(
1
zN
− 1

2z3
N

+ o

(
1
z3
N

))
as zN →∞.

Whence, in particular, if z0 is taken large enough, we get for all zN ≥ z0,

− 1
2zN

+ 1
8z3

N

≤ Γ
γ

(zN) ≤ − 1
2zN

+ 3
8z3

N

.

Hence there exists t0 > 0 also large enough such that for all t ≥ t0, all xN ≥ 0, and all
yN ≥ 0,

Γ
γ

(
yN + 2tA+ xN

2
√
t

)
≤ −1

2
2
√
t

yN + 2tA+ xN
+ 3

8

(
2
√
t

yN + 2tA+ xN

)3

≤ −
√
t

yN + 2tA+ xN
+ 3

8 (t)3/2A3
.

Using that control on Kα, one obtains

Kα (t, x, y) = K1 (t, x, y) + 2G (t, x, y)

≤ cyN

t
N+1

2
+ 2K (t,X − Y, xN + yN)

×
(

1 + 2A
√
t

(
−

√
t

yN + 2tA+ xN
+ 3

8 (t)3/2A3

))

≤ cyN

t
N+1

2
+ 2K (t,X − Y, xN + yN)

(
1− 2tA

yN + 2tA+ xN
+ 3

4tA2

)

≤ cyN

t
N+1

2
+ 2K (t,X − Y, xN + yN)

(
xN + yN

yN + 2tA+ xN
+ 3

4tA2

)

≤ cyN

t
N+1

2
+ 2

(4πt)N/2
xN + yN

yN + 2tA+ xN
e−
|X−Y |2+(xN+yN )2

4t + 3
2 (4π)N/2 (t)1+N

2 A2

= cyN

t
N+1

2
+ c1

tN/2
xN + yN

yN + 2tA+ xN
e−

(xN+yN )2

4t e−
|X−Y |2

4t + c2

t
N+2

2

≤ cyN

t
N+1

2
+ c1

tN/2
xN + yN

yN + 2tA+ xN
e−

(xN+yN )2

4t︸ ︷︷ ︸
Call that (♠).

+ c2

t
N+2

2
.
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The sequence consists then in controlling (♠). To do this, one refers the reader to the
reasoning done at pages 93-94 where same control has been done. Finally one obtains
that

(♠) ≤ c√
t

so we get
Kα (t, x, y) ≤ cyN

t
N+1

2
+ c1

t
N+1

2
+ c2

t
N+2

2
,

then for t large enough,

Kα (t, x, y) ≤ cyN

t
N+1

2
+ c1

t
N+1

2
+ c2

t
N+1

2
,

whence
‖Kα (t, • , y)‖L∞(RN+ ) ≤

cyN + c1

t
N+1

2
. 2

Remark. Notice one may show by an easy computation that the way we have extended
u0 in ũ0 is the only one which allows to obtain the Robin condition

Aũ (t,X, 0)− ∂xN ũ (t,X, 0)

for all t > 0. Therefore no simpler extension of u0 can be found.
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Scripts for numerical implementation

We have placed here the code we use to obtain the numerical results we have presented
along this report. The programs used are Scilab and FreeFem++ which are both free
downloadable. It is specified, at the beginning of each script which software is used.
You shall observe sometimes the symbols ∗ ∗ ∗ ∗ in comment, they indicate that the
value they follow may be changed without compromising the integrity of the script.

1. R-D equation in R2 ((F12 ) page 26) and ((F19 ) page
36)

1 //( FreeFem ++)
2 // The following code allows to see some R-D equations in a

rectangular domain of R2 for the reaction f(u)=u^(1+p)(1-u)
3
4 real T = 25; // Final time ****
5 real dt = 0.1; // Time step ****
6
7 int J=2; // Number of adjustments of the mesh (>0)
8
9 int n = 100; // Number of subdivisions ****

10
11 real H = 3; // Height ****
12 real W = 3; // Width ****
13
14 real d = 0.01; // Diffusion intensity ****
15
16 // FUJITA ’S EXPONENT
17 // p Fujita = pF = 2/N = 2/2 = 1
18 // p<pF => systematic HTE
19 // p>pF => non - systematic HTE
20 // p=0 => logistic
21 real p = 0; // Allee Effect intensity ****
22
23 // COMPACTLY SUPPORTED INITIAL DATUM ( Indicator function of a disc)
24 real x0 = 0; //x- coordinate of the disc ****
25 real y0 = H/2; //y- coordinate of the disc ****
26 real radius = 0.2; // Radius of the disc ****
27 real u0max = 0.7; // Maximum of the initial datum (<1)
28 func InitialDatum = u0max *0.5*(1+ sign( radius - sqrt ((x-x0 )^2+(y-y0

)^2))); // Building of the initial datum
29
30 // COMPUTE TO GET A REGULAR MESH
31 real ratio = H/W;
32 int m = n*W/H;
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33
34 // BUILDING OF THE RECTANGULAR MESH
35 border bottom (t = 0,1) {label = 1 ; x = -W/2 + t*W ; y = 0 ;};
36 border right(t = 0,1) {label = 1 ; x = W/2 ; y = 0 + t*H ;};
37 border top(t = 0,1) {label = 1 ; x = W/2 - t*W ; y = H ;};
38 border left(t = 0,1) {label = 1 ; x = -W/2 ; y = H - t*H ;};
39 mesh Th= buildmesh ( bottom (m)+ right(n)+ top(m)+ left(n));
40
41 // plot(Th , wait=false ); // Display the mesh
42
43 // DEFINITION OF FUNCTIONAL SPACES AND FUNCTIONS
44 fespace Vh(Th ,P1);
45 Vh u0= InitialDatum ;
46 Vh u=u0 , v, uold;
47
48 // PLOT THE INITIAL DATUM
49 real[int] colorhsv =[ // To plot in black & white
50 0, 0 , 0, // min is in black (note min is here zero)
51 0, 0 , u0max // u0max is in grey (1 is in white)
52 ];
53
54 cout << endl << endl <<"Norm L1 of u0 = " << int2d(Th)(u0) << endl

<< endl << endl; // Display the L1 -norm of u0
55
56 plot(u, nbiso =255 , value = 0, dim = 2, fill = 1, wait =1, hsv=

colorhsv , cmm="Press ENTER");
57
58 // DEFINE THE WEAK PROBLEM
59 problem RD(u, v, solver = UMFPACK ) //v is the test function
60 = int2d(Th)(u*v/dt) - int2d(Th)( uold*v/dt) // Estimate the time

derivative
61
62 + int2d(Th)(d* (dx(u)*dx(v)+dy(u)*dy(v))) // Diffusion
63
64 - int2d(Th)( uold ^(1+p)*(1 - uold )*v) // Reaction
65
66 //+ on(1, u=0) // Dirichlet on the frontier boundaries (if

commented : Neumann )
67 ;
68
69 {
70 ofstream savemin ("min.dat"); //To save min and max of the solution

for each time
71 ofstream savemax ("max.dat");
72
73 // SOLVING THE PROBLEM AND SAVE MIN AND MAX
74 for(real t = 0; t <= T; t += dt){
75 uold = u; //ie. u^{n -1} = u^n
76
77 for (int j=1;j<J+1;j++)
78 {
79 RD; // Solve the problem RD
80 Th= adaptmesh (Th ,u); // Adapt the mesh to the function u
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81 // plot(Th ,wait =1); //To see how adaptmesh works ...
82 }
83
84 uold=abs(uold ); //To get rid of potential negative values due

to approximation
85 u=abs(u); // Idem
86
87 real umax=uold []. max; // Get the min and the max of the solution
88 real umin=uold []. min;
89
90 cout << "min = " << umin << endl;
91 cout << "max = " << umax << endl;
92
93 // real uminRounded = round(abs(umin )*100)/100; // The rounded

min and max
94 // real umaxRounded = round(abs(umax )*100)/100;
95
96 real[int] colorhsv =[ // To plot in black & white
97 0, 0 , umin , // min is in black
98 0, 0 , umax // max is in white
99 ];

100
101 plot(u, nbiso =255 , value = 0, cmm="Time="+t+" min="+

umin+" max="+umax , dim = 2, fill = 1, wait =0, hsv=
colorhsv ); // Plot the solution

102
103 savemin << t << " " << umin << endl; // save the solution ’s min
104 savemax << t << " " << umax << endl; // save the solution ’s max
105 }// END SOLVING PROBLEM
106
107 }// END OFSTREAM
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2. R-D equation on the Field-Road space R2
+ ((F27 ) page

55)

1 //( FreeFem ++)
2 // The following code allows to see some R-D equations on the Road -

Field space R^{2}_{+} for the reaction f(u)=u^(1+p)(1-u)
3
4 real T = 25; // Final time ****
5 real dt = 0.1; // Time step ****
6
7 int n = 20; // Number of subdivisions ****
8
9 real H = 3; // Height ****

10 real W = 10; // Width ****
11
12 // PARAMETERS OF THE ROAD -FIELD SPACE
13 real d = 0.01; // Diffusion intensity in the Field ****
14 real D = 1; // Diffusion intensity on the Road ****
15 real mu = 4; // Migratory equilibrium between Road and Field ****
16
17 // FUJITA ’S EXPONENT
18 // p Fujita = pF = 2/N = 2/2 = 1
19 // p<pF => systematic HTE
20 // p>pF => non - systematic HTE
21 // p=0 => logistic
22 real p = 0; // Allee Effect intensity ****
23
24 // COMPACTLY SUPPORTED INITIAL DATUM ON FIELD ( Indicator function

of a disc)
25 real x0 = 0; //x- coordinate of the disc ****
26 real y0 = H/16; //y- coordinate of the disc ****
27 real radius = 0.2; // Radius of the disc ****
28 real v0max = 0.7; // Maximum of the initial datum (<1)
29 func InitialDatum = v0max *0.5*(1+ sign( radius - sqrt ((x-x0 )^2+(y-y0

)^2))); // Building of the initial datum
30
31 // COMPUTE TO GET A REGULAR MESH
32 real ratio = H/W;
33 int m = n*W/H;
34
35 int NoRoad = 1; // label of truncation zones of the space (put

Neumann on that)
36 int Road = 2; // label of the interface of exchange (link between

Field and Road)
37
38 // BUILDING OF THE RECTANGULAR MESH
39 border bottom (t = 0,1) {label = 2 ; x = -W/2 + t*W ; y = 0 ;};
40 border right(t = 0,1) {label = 1 ; x = W/2 ; y = 0 + t*H ;};
41 border top(t = 0,1) {label = 1 ; x = W/2 - t*W ; y = H ;};
42 border left(t = 0,1) {label = 1 ; x = -W/2 ; y = H - t*H ;};
43 mesh Th= buildmesh ( bottom (m)+ right(n)+ top(m)+ left(n));
44
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45 // plot(Th , wait=false ); // Display the mesh
46
47 // DEFINITION OF FUNCTIONAL SPACES AND FUNCTIONS
48 fespace Vh(Th ,P1);
49 Vh v0= InitialDatum ;
50 Vh v=v0 , w1 , vold; // Field ’s functions (w1 is test function )
51 Vh u=0, w2 , uold ; // Road ’s functions (w2 is test function )
52
53 // PLOT THE INITIAL DATUM
54 real[int] colorhsv =[ // To plot in black (0) & white (1)
55 0, 0 , 0, // min is in black (note min is here zero)
56 0, 0 , v0max // u0max is in grey (1 is in white)
57 ];
58 plot(v, nbiso =255 , value = 0, dim = 2, fill = 1, wait =1, hsv=

colorhsv , cmm="Press ENTER");
59
60 // DEFINE THE WEAK PROBLEMS (FIELD & ROAD)
61 problem field(v, w1) //w1 is the test function
62 = int2d(Th)(v*w1/dt)-int2d(Th)( vold*w1/dt) // Estimate the time

derivative
63
64 + int2d(Th)(d* (dx(v)*dx(w1)+dy(v)*dy(w1 ))) // Diffusion
65
66 + int1d(Th , 2)(v*w1) // Migration Field >>Road
67 -int1d(Th , 2)( mu*u*w1) // Migration Road >>Field
68
69 - int2d(Th)( vold ^(1+p)*(1 - vold )*w1) // Reaction
70
71 //+ on(1, v=0) // Dirichlet on the frontier boundaries (if

commented : Neumann )
72 ;
73
74 // Note the u is considered as a function whom the domain is the

same as v but it does not matter because we only consider u at
the bottom frontier ...

75 problem road(u, w2) //w2 is the test function
76 = int2d(Th)(u*w2/dt)-int2d(Th)( uold*w2/dt) // Estimate the time

derivative
77
78 + int2d(Th)(D* (dx(u)*dx(w2 ))) // Diffusion
79
80 + int2d(Th)(mu*u*w2) // Migration Road >>Field
81 - int2d(Th)(v*w2) // Migration Field >>Road
82
83 //+ on(1, u=0 // Dirichlet on the frontier boundaries (if

commented : Neumann )
84 ;
85
86 {
87 ofstream usavemin ("umin.dat");
88 ofstream usavemax ("umax.dat");
89 ofstream vsavemin ("vmin.dat");
90 ofstream vsavemax ("vmax.dat");
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91
92 // SOLVING THE PROBLEMS AND SAVE MIN AND MAX
93 for(real t = 0; t <= T+dt; t += dt){
94 uold = u; //ie. u^{n -1} = u^n
95 road; // Solve road problem
96
97 vold = v; //ie. u^{n -1} = u^n
98 field; // Solve field problem
99

100 uold=abs(uold ); //To get rid of potential negative values due to
approximation

101 vold=abs(vold ); // Idem
102 u=abs(u); // Idem
103 v=abs(v); // Idem
104
105 real vmax=vold []. max; // Get the min and the max of v
106 real vmin=vold []. min;
107
108 real vminRounded = round(abs(vmin )*100)/100; // The rounded min

and max of v
109 real vmaxRounded = round(abs(vmax )*100)/100;
110
111 real[int] colorhsv =[ // To plot in black (0) & white (1)
112 0, 0 , vmin ,
113 0, 0 , vmax
114 ];
115
116 // GET VALUES ON THE ROAD (we need to extract the values of u

on the bottom frontier )
117 varf On2(u,v) = on(2,u=1);
118 real[int] on2=On2 (0,Vh ,tgv =1);
119 int[int] indices2 (on2.sum );
120 for(int i=0,j=0;i<Vh.ndof ;++i) if(on2[i]){
121 indices2 [j] = i; ++j;
122 }
123 Vh uu=u;
124 real[int] uon2( indices2 .n);
125 for(int i=0;i< indices2 .n;++i){
126 uon2[i] = uu [][ indices2 [i]];
127 }
128
129 real umax=uon2.max; // Get the min and the max of u
130 real umin=uon2.min;
131
132 real uminRounded = round(abs(umin )*100)/100; // The rounded min

and max of u
133 real umaxRounded = round(abs(umax )*100)/100;
134
135 plot(v, nbiso =255 , cmm="(Plot : FIELD) (Time = "+t+" on "+T+"

) (Min = "+ uminRounded +" | "+ vminRounded +") (Max = "+
umaxRounded +" | "+ vmaxRounded +") (Road diffusion : D =
"+D+") (Field diffusion : d = "+d+") ( Migration
equilibrium : mu = "+mu+")", value = 0, dim = 2, fill = 1, wait
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=0, hsv= colorhsv );
136
137 usavemin << t << " " << umin << endl;// save the solution ’s min
138 usavemax << t << " " << umax << endl;// save the solution ’s max
139
140 vsavemin << t << " " << vmin << endl;// save the solution ’s min
141 vsavemax << t << " " << vmax << endl;// save the solution ’s max
142 }// END SOLVING PROBLEMS
143
144 }// END OFSTREAM
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3. Spreading speed for large Road diffusion ((F37 ) page
80)

1 //( Scilab )
2 // The following code allows to assess with epsilon - accuracy the

value of the asymptotic speed C*=C*(\mu , d, D)= C_ast according
to the parameters \mu , d and D.

3
4 clear ()
5
6 // ACCURACY PARAMETERS
7 epsilon =1e -3; // Closeness to the right C*
8 n =1000; // Thinness of the discretization to check the positivity

condition on phi
9

10 // DEFINITION OF FUNCTION \ varphi
11 function y=phi(c,b)
12 y=(c-sqrt(c*c-CKPP*CKPP - 4*d*d*b*b ))/(2* d) - (c+sqrt(c*c+(4* mu*d

*D*b)/(1+d*b )))/(2* D);
13 endfunction
14
15 // ESTIMATE FOR C*
16 function result =c_ast(mu ,d,D)
17 CKPP =2* sqrt(d* dx_f_zero );
18
19 // Bounds fo finding C*
20 c0=CKPP;// Value of c for which we are sure there exists no

solution
21 c1= dx_f_zero *sqrt(D)+1; // Value of c for which we are sure there

exists two solutions
22
23 phi_values =zeros (1,n); // Initialisation for saving the values of

phi
24
25 // DICHOTOMOUS LOOP
26 while (c1 -c0 > epsilon ) // Repeat the loop while accuracy is not

sufficient ...
27 c_bar =(c0+c1 )/2;
28
29 // Discretisation of the place were \beta sits for checking

positivity of phi
30 space= linspace (0, sqrt(c_bar*c_bar -CKPP*CKPP )/(2*d),n);
31
32 // Store the values of phi
33 for i=1:n
34 phi_values (i)= phi(c_bar ,space(i));
35 end
36
37 // Check whether phi is positive
38 if min(real( phi_values ))>0 then
39 c0=c_bar;
40 else
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41 c1=c_bar;
42 end
43
44 end
45 result =c_bar; // Return the result of the function
46 endfunction
47
48 // PARAMETERS
49 mu =1; // ****
50 d=1; // ****
51 D=10; // ****
52 dx_f_zero =1; //f ’(0)=1
53 c_ast(mu ,d,D)// This is a test; with \mu=d=f ’(0)=1 and D=10, one

finds on Geogebra C *~=3.2
54
55 // ////////////////////////////////////
56 // The following concern the behaviour of C* as D becomes large; mu

and d being fixed =1. One assess C*(1,1,D) for many large
values of D then we plot (D, C*(1,1,D)) in a LOG/LOG scale; we
expect then the point to be aligned on the graph following the
direction of y=x/2.

57
58 mu =1;
59 d=1;
60 dx_f_zero =1;
61
62 D_values =%e^( linspace (1 ,37 ,100)); // Values tested of D ( adapted to

the LOG scale)
63 C_ast_values =zeros( D_values ); // Initialisation of the store of

values of C*
64
65 for i=1: length ( D_values )
66 C_ast_values (i)= c_ast(mu ,d, D_values (i));
67 end
68
69 LOG_D_values =log( D_values );
70 LOG_C_ast_values =log( C_ast_values );
71
72 // PLOTING IN THE LOG/LOG scale
73 clf ()
74 plot( LOG_D_values , LOG_C_ast_values ,’o’) // plot the points
75 plot( LOG_D_values , LOG_C_ast_values ,) // interpolate the points
76 plot ([1 37] ,[2 20]) // plot the line y=x/2 + 3/2 to compare the

slopes
77
78 correlation =corr( LOG_D_values , LOG_C_ast_values ,1)/ sqrt(corr(

LOG_D_values , LOG_D_values ,1)* corr( LOG_C_ast_values ,
LOG_C_ast_values ,1)); // assess the linear correlation
coefficient

79
80 [a,b,s]= reglin ( LOG_D_values , LOG_C_ast_values ); // assess the

equation ’s coefficients of the line
81
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82 disp(’As D becomes large , C* evolves as ’+ string (exp(b))+ ’(D)^( ’+
string (a)+’). The linear correlation coefficient equals ’+
string ( correlation ))
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This part is dedicated to alleviate the content of this report. We announce here some
general results whom enunciation at the moment we use them may be unwelcome.

1. Fourier transform

For a function f ∈ L1 (R), one calls Fourier transform of f the function defined for all
ξ ∈ R by

F [f ] (ξ) = f̂ (ξ) :=
∫
R

exp (−ixξ) f (x) dx,

and one calls inverse Fourier transform of f the function defined for all x ∈ R by

F−1 [f ] (ξ) = f̌ (x) :=
∫
R

exp (+iξx) f (ξ) dξ.

One states now a few properties for the Fourier transform:

1 f̂ is bounded and
∣∣∣f̂ ∣∣∣ ≤ ‖f‖L1 .

2 f̂ ∗ g = f̂ · ĝ, where · denotes the pointwise product.

3 f may be rebuilt from f̂ thanks to the following inversion formula:

f = 1
2πF−1 [F [f ] ] = 1

2π
ˇ̂
f.

4 Gaussian functions remain Gaussian through the Fourier transform: for a > 0,

F
[
exp

(
−ax2

)]
=
√
π

a
exp

(
− 1

4aξ
2
)
.

5 Assume that f ∈ C2
c (R) or f ∈ S (R), then we have

F [f ′ ] (ξ) = iξf̂ (ξ) and F [f ′′ ] (ξ) = −ξ2f̂ (ξ) .
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2. Eigenvalues of the Laplacian

Let Ω be an open bounded regular connected set of RN (N ≥ 1) and λ ∈ R. We consider
here the following eigenvalue problem (EP) with Dirichlet boundary conditions,

(EP) :
{
−d∆u = λu X ∈ Ω,
u (X) = 0 X ∈ ∂Ω

whom we are reaching some couple solution (λ, u), “(eigenvalue/eigenfunction)”.

Theorem 45 (Diagonalization of the Laplacian (with Dirichlet BC))
There exists an Hilbert basis (ϕn)n∈N of L2 (Ω) and some real numbers

0 < λ0 < λ1 ≤ λ2 ≤ · · · −→ ∞

such that for all n ≥ 1,

• ϕn ∈ H1
0 (Ω) ∩ C∞

(
Ω
)
, and

• (λn, ϕn) is a couple solution for (EP).

λn is called an eigenvalue for −d∆ with Dirichlet boundary condition in Ω, and ϕn its
eigenfunction associated.

Definition 46 (Principal eigenvalue)
The positive real λ0 is named the principal eigenvalue.

Theorem 47 (Properties of the principal eigenvalue/eigenfunction)
The principal eigenvalue/eigenfunction couple (λ0, ϕ0) owns the following properties:

• λ0 is given by the Rayleigh’s formula

λ0 = min
u∈H1

0 (Ω)\{0}

{∫
Ω d |∇u|

2∫
Ω u

2

}
.

• λ0 is of multiplicity 1.

• ϕ0 is of constant sign on Ω, whereas it is not the case for all ϕk with k > 1.

• If Ω = BR is a centred ball of radius R, then

– ϕ0 is radial,
– |X| 7→ ϕ0 (|X|) : R+ → R is a decreasing function,
– R 7→ λR is a decreasing function and lim

R→+∞
λR = 0.

Remark. In the content of this report we take ϕ0 so that is non-negative on Ω and
‖ϕ0‖L∞(Ω) = 1.
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3. Elliptic maximum principles

We state here the weak and strong elliptic maximum principles; to get further informa-
tions, one refers to [13]. Let Ω be an open regular connected set of RN (N ≥ 1) and
consider the following elliptic differential operator:

Lu :=
N∑

i,j=1
aij (X) ∂xixju+

N∑
i=1

bi (X) ∂xiu+ c (X)u.

Hypothesis 6: Take the following assumptions on the coefficient in L:
• aij, bi and c are bounded and continuous on Ω,

• for all i, j ∈ J1;NK, aij = aji.

Hypothesis 7: Suppose that −L is uniformly elliptic, that is there some real λ > 0
such that for every X ∈ Ω and for any vector ξ ∈ RN \ {0RN}, we have

−
N∑

i,j=1
aijξiξj > λ |ξ|2 .

Remark. Note for example that ∆u def=
N∑

i,j=1
δij∂xixju is uniformly elliptic so one can

work with Lu := −∆u.

Theorem 48 (Weak elliptic maximum principle)
Let u ∈ C2 (Ω) ∩ C

(
Ω
)
be such that Lu ≤ 0 in Ω.

• If c ≡ 0, then max
Ω

u is actually achieved on the frontier ∂Ω.

• If c ≥ 0, then max
Ω

u is smaller than max
∂Ω
{u, 0}; in particular, if max

Ω
u ≥ 0, then it

is actually achieved on the frontier ∂Ω.

Theorem 49 (Strong elliptic maximum principle)
Let u ∈ C2 (Ω) ∩ C

(
Ω
)
be such that Lu ≤ 0 in Ω.

• If c ≡ 0 and u attains an interior maximum (i.e. in Ω =
◦
Ω), then u is constant in Ω.

• If c ≥ 0 and u attains a non-negative interior maximum (i.e. in Ω =
◦
Ω), then u is

constant in Ω.

Lemma 50 (Elliptic Hopf’s lemma)
Let u ∈ C2 (Ω) ∩ C

(
Ω
)
be such that Lu ≤ 0 in Ω.

• If c ≡ 0 and u attains a maximum in x0 ∈ ∂Ω, then either

u ≡ u (x0) in Ω or ∂u

∂ν
(x0) > 0.

• If c ≥ 0 the latter also holds under the extra assumption u (x0) ≥ 0.
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4. Parabolic maximum principles

We state here the weak and strong parabolic maximum principles; to get further
informations, one refers to [13]. Let Ω be an open regular connected set of RN (N ≥ 1)
and consider the following elliptic differential operator:

Pu := ∂tu+
N∑

i,j=1
aij (X) ∂xixju+

N∑
i=1

bi (X) ∂xiu+ c (X)u
︸ ︷︷ ︸

:=Lu

,

where the differential operator L satisfies hypothesis 6 and 7 defined for the elliptic
maximum principles on the previous page.
Remark. Note for example one can deal with Pu := ∂tu−∆u.

For T > 0, we define the parabolic domain and its parabolic frontier:

ΩT := (0;T ]× Ω and ∂pΩT :=
(
{0} × Ω

)
∪
(

(0;T ]× ∂Ω
)
.

Figure F42 – Illustration 1D of the domain Ω, the parabolic domain ΩT and the
parabolic frontier ∂pΩT .

Theorem 51 (Weak parabolic maximum principle)
Let u ∈ C1,2 (ΩT ) ∩ C

(
ΩT

)
be such that Pu ≤ 0 in ΩT .

• If c ≡ 0, then max
ΩT

u is actually achieved on the parabolic frontier ∂pΩT .

• If c ≥ 0, then max
ΩT

u is smaller than max
∂pΩT
{u, 0}; in particular, if max

ΩT
u ≥ 0, then it

is actually achieved on the parabolic frontier ∂pΩT .

Theorem 52 (Strong parabolic maximum principle)
Let u ∈ C1,2 (ΩT ) ∩ C

(
ΩT

)
be such that Pu ≤ 0 in ΩT .

• If c ≡ 0 and u attains an interior maximum at time T (i.e. in {T} × Ω = {T} ×
◦
Ω),

then u is constant in ΩT .
• If c ≥ 0 and u attains a non-negative interior maximum at time T (i.e. in
{T} × Ω = {T} ×

◦
Ω), then u is constant in ΩT .
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Lemma 53 (Parabolic Hopf’s lemma)
Let u ∈ C1,2 (ΩT ) ∩ C

(
ΩT

)
be such that Pu ≤ 0 in ΩT .

• If c ≡ 0 and u attains a maximum on the frontier at time T , that is at
(T, x0) ∈ {T} × ∂Ω, then either

u ≡ u (T, x0) in ΩT or ∂u

∂ν
(T, x0) > 0.

• If c ≥ 0 the latter also holds under the extra assumption u (T, x0) ≥ 0.
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Notations

Functional sets

Ck (U,R) For U an open set of RN and k ∈ N, set of functions f : U → R
such that the partial derivative

∂|α|f

∂xα1
1 · · · ∂xαNN

exists and is continuous on U , for all α ∈ NN ∩ {|α| ≤ k}.
“R” might be forgotten if ever it would be obvious.

C∞ (U,R) Intersection of all Ck (U,R) i.e.

C∞ (U,R) :=
∞⋂
k=0

Ck (U,R) .

Ckc (U,R) For k ∈ N∪{∞}, set of functions in Ck (U,R) which are moreover
compactly supported.

Ck,` (U × V,R) For k, ` ∈ N ∪ {∞}, set of functions U × V → R which are
both class Ck with respect to the variable in U and class C` with
respect to the variable in V .

S (R) Schwartz space: subset of C∞ (R) whose derivatives are rapidly
decreasing, i.e.

S (R) :=
{
f (C∞) (R,R) such that ∀n ∈ N,∀k ∈ N,

lim
|x|→∞

|x|k
∣∣∣f (n) (x)

∣∣∣ = 0
}
.

Gaussian or smooth compactly supported functions are for ex-
ample in S (R).
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Notations

Lp (U) For U ⊂ RN and 1 ≤ p < ∞, Lebesgue space of measurable
functions U → R whom the integral of the pth power on U is
finite.

L∞ (U) For U ⊂ RN , space of measurable bounded functions U → R.

H1 (U) For U ⊂ RN , denotes the Sobolev space of L2 (U) functions f
which own a weak derivative f ′ also in L2 (U).

H1
0 (U) For U ⊂ RN , denotes the kernel of the trace operator:

γ : H1 (U)→ L2 (∂U).

BUC (U) For U ⊂ RN , space of bounded functions U → R uniformly
continuous on U .

D (f) Domain of the function f .

supp (u) Support of the function u, i.e. the closure of the set of points
where u is non-zero.

Im (f) Image of the function f .

Abbreviations

ODE Ordinary Differential Equation.

PDE Partial Differential Equation.

Fisher-KPP Fisher, Kolmogorov, Petrovsky, Piskunov.

R-D Reaction-Diffusion.

HTE Hair Trigger Effect.

BC Boundary conditions.

hyp Hypothesis.
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Notations

IBP Integration by part.

CP Comparison principle.

Differential operators

∂tu Partial derivative of u with respect to the time.

∆u Laplacian of u.

∂u

∂n
= ∂nu Partial derivative of u following the normal unit exterior vector

n, that is,
∂u

∂n
= ∇u · n.

Norms

|X| Euclidean norm of X ∈ RN (N ∈ N?).

‖f‖Lp(U) Usual norm on the Lebesgue space Lp (U) defined by

‖f‖Lp(U) :=
(∫

U
fp
)1/p

.

“(U)” might be forgotten if ever it would be obvious.

‖f‖L∞(U) Usual norm on the space L∞ (U) defined by

‖f‖L∞(U) := sup
U
|f | .

“(U)” might be forgotten if ever it would be obvious.

Functions

δX The Dirac delta in the point X ∈ RN .
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Others

f ∗ g Convolution product of f and g defined by

(f ∗ g) (x) =
∫
f (x− y) g (y) dy.

:= vs def= The symbol := denotes the first definition of an element whereas
def= recalls the definition of an element defined above.

|A| If A is a Lebesgue-measurable set, denotes then the measure of
A.

Lip (f) If f is a Lipschitz function, denotes then the Lipschitz constant
of f defined by

Lip (f) = inf {` > 0 / ∀x, y ∈ D (f) , |f (x)− f (y)| ≤ ` |x− y|}.

Lip
U

(f) Denotes then the Lipschitz constant of f|U .

BR Open centred ball of radius R in RN .

B (X,R) Open ball centred on X and of radius R in RN .

1A Indicator function of the set A.

∂A Frontier of the set A.

J1;NK Denotes the set {1, · · ·N}.

δij Kronecker delta defined by δij :=
{

1 if i = j
0 if i 6= j.

. A . B means that there is a positive constant c = c (N, d, α)
such that A ≤ cB.
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